On the viability of the shearing box approximation for numerical studies of MHD turbulence in accretion disks
نویسنده
چکیده
Context. Most of our knowledge on the nonlinear development of the magneto-rotational instability (MRI) relies on the results of numerical simulations employing the shearing box (SB) approximation. A number of difficulties arising from this approach have recently been pointed out in the literature. Aims. We thoroughly examine the effects of the assumptions made and numerical techniques employed in SB simulations. This is done in order to clarify and gain better understanding of those difficulties as well as of a number of additional serious problems, raised here for the first time, and of their impact on the results. Methods. Analytical derivations and estimates as well as comparative analysis to methods used in the numerical study of turbulence are used. Numerical experiments are performed to support some of our claims and conjectures. Results. The following problems, arising from the (virtually exclusive) use of the SB simulations as a tool for the understanding and quantification of the nonlinear MRI development in disks, are analyzed and discussed: (i) inconsistencies in the application of the SB approximation itself; (ii) the limited spatial scale of the SB; (iii) the lack of convergence of most ideal MHD simulations; (iv) side-effects of the SB symmetry and the non-trivial nature of the linear MRI; (v) physical artifacts arising on the too small box scale due to periodic boundary conditions. Conclusions. The computational and theoretical challenge posed by the MHD turbulence problem in accretion disks cannot be met by the SB approximation, as it has been used to date. A new strategy to confront this challenge is proposed, based on techniques widely used in numerical studies of turbulent flows developing (e.g., with the help of local numerical studies) a sub-grid turbulence model and implementing it in global calculations.
منابع مشابه
Shearing Box Simulations of the Mri in a Collisionless Plasma
We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the black hole in the Galactic Center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A fluid closure approximation is used to calculate...
متن کاملAngular Momentum Transport in Accretion Disks: Scaling Laws in Mri-driven Turbulence
We present a scaling law that predicts the values of the stresses obtained in numerical simulations of saturated MRI-driven turbulence in non-stratified shearing boxes. It relates the turbulent stresses to the strength of the vertical magnetic field, the sound speed, the vertical size of the box, and the numerical resolution and predicts accurately the results of 35 numerical simulations perfor...
متن کاملNumerical Models of Accretion Disks
I review recent numerical studies of accretion disks, focusing on measurements of the turbulent shear stress, or α, in the shearing box model. I conclude with a list of astronomically relevant open questions that can be settled via future numerical experiments.
متن کاملSaturation and Thermalization of the Magnetorotational Instability: Recurrent Channel Flows and Reconnections
The nonlinear evolution and the saturation mechanism of the magnetorotational instability (MRI) are investigated using three-dimensional resistive MHD simulations. A local shearing box is used for our numerical analysis and the simulations begin with a purely vertical magnetic field. We find that the magnetic stress in the nonlinear stage of the MRI is strongly fluctuating. The time evolution s...
متن کاملEffect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars
Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008