Novel protein fold discovered in the PabI family of restriction enzymes
نویسندگان
چکیده
Although structures of many DNA-binding proteins have been solved, they fall into a limited number of folds. Here, we describe an approach that led to the finding of a novel DNA-binding fold. Based on the behavior of Type II restriction-modification gene complexes as mobile elements, our earlier work identified a restriction enzyme, R.PabI, and its cognate modification enzyme in Pyrococcus abyssi through comparison of closely related genomes. While the modification methyltransferase was easily recognized, R.PabI was predicted to have a novel 3D structure. We expressed cytotoxic R.PabI in a wheat-germ-based cell-free translation system and determined its crystal structure. R.PabI turned out to adopt a novel protein fold. Homodimeric R.PabI has a curved anti-parallel beta-sheet that forms a 'half pipe'. Mutational and in silico DNA-binding analyses have assigned it as the double-strand DNA-binding site. Unlike most restriction enzymes analyzed, R.PabI is able to cleave DNA in the absence of Mg(2+). These results demonstrate the value of genome comparison and the wheat-germ-based system in finding a novel DNA-binding motif in mobile DNases and, in general, a novel protein fold in horizontally transferred genes.
منابع مشابه
Hyperthermophilic DNA methyltransferase M.PabI from the archaeon Pyrococcus abyssi.
Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5'-(GTA/C)] with a novel structure was discovered. I...
متن کاملDiscovery of a novel restriction endonuclease by genome comparison and application of a wheat-germ-based cell-free translation assay: PabI (5′-GTA/C) from the hyperthermophilic archaeon Pyrococcus abyssi
To search for restriction endonucleases, we used a novel plant-based cell-free translation procedure that bypasses the toxicity of these enzymes. To identify candidate genes, the related genomes of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii were compared. In line with the selfish mobile gene hypothesis for restriction-modification systems, apparent genome rearrang...
متن کاملDiscovery of a novel restriction endonuclease by genome comparison and application of a wheat-germ-based cell-free translation assay: PabI (50-GTA/C) from the hyperthermophilic archaeon Pyrococcus abyssi
To search for restriction endonucleases, we used a novel plant-based cell-free translation procedure that bypasses the toxicity of these enzymes. To identify candidate genes, the related genomes of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii were compared. In line with the selfish mobile gene hypothesis for restriction– modification systems, apparent genome rearran...
متن کاملIdentification of novel restriction endonuclease-like fold families among hypothetical proteins
Restriction endonucleases and other nucleic acid cleaving enzymes form a large and extremely diverse superfamily that display little sequence similarity despite retaining a common core fold responsible for cleavage. The lack of significant sequence similarity between protein families makes homology inference a challenging task and hinders new family identification with traditional sequence-base...
متن کاملRestriction-modification system with methyl-inhibited base excision and abasic-site cleavage activities
The restriction-modification systems use epigenetic modification to distinguish between self and nonself DNA. A modification enzyme transfers a methyl group to a base in a specific DNA sequence while its cognate restriction enzyme introduces breaks in DNA lacking this methyl group. So far, all the restriction enzymes hydrolyze phosphodiester bonds linking the monomer units of DNA. We recently r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007