Acoustic interaction forces between small particles in an ideal fluid.

نویسندگان

  • Glauber T Silva
  • Henrik Bruus
چکیده

We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair-interaction potentials with no restriction on the interparticle distance. The theory is applied to studies of the acoustic interaction force on a particle suspension in either standing or traveling plane waves. The results show aggregation regions along the wave propagation direction, while particles may attract or repel each other in the transverse direction. In addition, a mean-field approximation is developed to describe the acoustic interaction force in an emulsion of oil droplets in water.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Particle Separation in the Fluid Flow in a Microchannel Including Spiral and Acoustic Regions

Particulate separation has many applications in medicine, biology and industry. In this research, the separation of polystyrene particles with a diameter of 10, 20 and 30 μm in the fluid flow of a microchannel is investigated. The microchannel consists of a spiral region and a straight region under the influence of acoustic waves. In the spiral region, the particles under hydrodynamic effects u...

متن کامل

Solvation Force of Ellipse-Shaped Molecules Moving in One Dimension and Confined between Two Parallel Planar Walls

     The model fluids containing hard ellipses (HEs) and Gay-Berne (GB) particles where their center is moving in one dimension and confined between two parallel walls with different interactions are investigated using Monte Carlo simulation, NVT ensemble. The dependency of fluid pressure with respect to the wall distances is studied. The oscillatory behaviors are seen in this quantity against ...

متن کامل

Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows

An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...

متن کامل

A Parallel Boundary Element Algorithm for the Computation of the Acoustic Radiation Forces on Particles in Viscous Fluids

Ultrasonic fields can be used to manipulate particles in fluid suspensions by means of acoustic radiation forces. The physical cause of these forces is the inhomogeneity caused by the particles, resulting in wave scattering and ultimately distortion of the time-harmonic fields. Under certain assumptions, the radiation force can be deduced analytically which provides valuable understanding of th...

متن کامل

تأثیر تغییر مشخصات مایع روزنه‌ای بر خصوصیات فیزیکی و ریز‌ساختاری بنتونیت

Considering the importance of micro-structural characteristics of clayey soils on their behavior, the main objective of this research is to investigate the effect of pore fluid properties variations on clayey soils and their physical and micro-structural changes. For experimental purposes, soil-electrolyte solutions with the ratio of 1:50 prepared. A series of physical experiments, as well as, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 90 6  شماره 

صفحات  -

تاریخ انتشار 2014