Self-concordant analysis for logistic regression

نویسنده

  • Francis R. Bach
چکیده

Most of the non-asymptotic theoretical work in regression is carried out for the square loss, where estimators can be obtained through closed-form expressions. In this paper, we use and extend tools from the convex optimization literature, namely self-concordant functions, to provide simple extensions of theoretical results for the square loss to the logistic loss. We apply the extension techniques to logistic regression with regularization by the l2-norm and regularization by the l1-norm, showing that new results for binary classification through logistic regression can be easily derived from corresponding results for least-squares regression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss

We consider distributed convex optimization problems originated from sample average approximation of stochastic optimization, or empirical risk minimization in machine learning. We assume that each machine in the distributed computing system has access to a local empirical loss function, constructed with i.i.d. data sampled from a common distribution. We propose a communication-efficient distri...

متن کامل

DiSCO: Distributed Optimization for Self-Concordant Empirical Loss

We propose a new distributed algorithm for empirical risk minimization in machine learning. The algorithm is based on an inexact damped Newton method, where the inexact Newton steps are computed by a distributed preconditioned conjugate gradient method. We analyze its iteration complexity and communication efficiency for minimizing self-concordant empirical loss functions, and discuss the resul...

متن کامل

Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence

We propose a randomized second-order method for optimization known as the Newton Sketch: it is based on performing an approximate Newton step using a randomly projected or sub-sampled Hessian. For self-concordant functions, we prove that the algorithm has super-linear convergence with exponentially high probability, with convergence and complexity guarantees that are independent of condition nu...

متن کامل

Newton Sketch: A Near Linear-Time Optimization Algorithm with Linear-Quadratic Convergence

We propose a randomized second-order method for optimization known as the Newton sketch: it is based on performing an approximate Newton step using a randomly projected Hessian. For self-concordant functions, we prove that the algorithm has superlinear convergence with exponentially high probability, with convergence and complexity guarantees that are independent of condition numbers and relate...

متن کامل

Randomized block proximal damped Newton method for composite self-concordant minimization

In this paper we consider the composite self-concordant (CSC) minimization problem, which minimizes the sum of a self-concordant function f and a (possibly nonsmooth) proper closed convex function g. The CSC minimization is the cornerstone of the path-following interior point methods for solving a broad class of convex optimization problems. It has also found numerous applications in machine le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0910.4627  شماره 

صفحات  -

تاریخ انتشار 2009