Stochastic reconstruction of an oolitic limestone by generative adversarial networks
نویسندگان
چکیده
Stochastic image reconstruction is a key part of modern digital rock physics and materials analysis that aims to create numerous representative samples of material microstructures for upscaling, numerical computation of effective properties and uncertainty quantification. We present a method of three-dimensional stochastic image reconstruction based on generative adversarial neural networks (GANs). GANs represent a framework of unsupervised learning methods that require no a priori inference of the probability distribution associated with the training data. Using a fully convolutional neural network allows fast sampling of large volumetric images. We apply a GAN based workflow of network training and image generation to an oolitic Ketton limestone micro-CT dataset. Minkowski functionals, effective permeability as well as velocity distributions of simulated flow within the acquired images are compared with the synthetic reconstructions generated by the deep neural network. While our results show that GANs allow a fast and accurate reconstruction of the evaluated image dataset, we address a number of open questions and challenges involved in the evaluation of generative network based methods.
منابع مشابه
Reconstruction of three-dimensional porous media using generative adversarial neural networks
To evaluate the variability of multiphase flow properties of porous media at the pore scale, it is necessary to acquire a number of representative samples of the void-solid structure. While modern x-ray computer tomography has made it possible to extract three-dimensional images of the pore space, assessment of the variability in the inherent material properties is often experimentally not feas...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملConditioning of three-dimensional generative adversarial networks for pore and reservoir-scale models
Geostatistical modeling of petrophysical properties is a key step in modern integrated oil and gas reservoir studies. Recently, generative adversarial networks (GAN) have been shown to be a successful method for generating unconditional simulations of poreand reservoir-scale models. This contribution leverages the differentiable nature of neural networks to extend GANs to the conditional simula...
متن کاملFacegans: Stable Generative Adversarial Networks with High-quality Images
Generative Adversarial Networks (GANs) have shown impressive performance in producing images highly similar to original dataset under unsupervised learning. However, the losses of discriminator and generator are highly fluctuated, which affects the quality of fake images produced by the generator. In this work, we propose Face Generative Adversarial Networks (FaceGANs). Compared to the conventi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.02854 شماره
صفحات -
تاریخ انتشار 2017