Methods for merging Gaussian mixture components
نویسنده
چکیده
The problem of merging Gaussian mixture components is discussed in situations where a Gaussian mixture is fitted but the mixture components are not separated enough from each other to interpret them as “clusters”. The problem of merging Gaussian mixtures is not statistically identifiable, therefore merging algorithms have to be based on subjective cluster concepts. Cluster concepts based on unimodality and misclassification probabilities (“patterns”) are distinguished. Several different hierarchical merging methods are proposed for different cluster concepts, based on the ridgeline analysis of modality of Gaussian mixtures, the dip test, the Bhattacharyya dissimilarity, a direct estimator of misclassification and the strength of predicting pairwise cluster memberships. The methods are compared by a simulation study and application to two real datasets. A newvisualisationmethod of the separation of Gaussian mixture components, the ordered posterior plot, is also introduced.
منابع مشابه
A Novel Merging Algorithm in Gaussian Mixture Probability Hypothesis Density Filter for Close Proximity Targets Tracking ⋆
This paper proposes a novel merging algorithm in Gaussian mixture probability hypothesis density filter to track close proximity targets. The proposed algorithm is added after GM-PHD recursion, in a condition that more than one target has the same state. The weights of Gaussian components decide whether the components can be utilized to extract states, and the means and covariances of Gaussian ...
متن کاملA Background Modeling Algorithm Based on Improved Adaptive Mixture Gaussian
For better background modeling in scenes with nonstationary background, a background modeling algorithm based on adaptive parameter adjustment of the Mixture Gaussian is proposed. Mixture Gaussians is applied to learn the distribution of per-pixel in the temporal domain and to control adaptive adjustment of number K of Gaussian components through in increasing, deleting or merging similar Gauss...
متن کاملAn Adaptive Split-Merge Scheme for Uncertainty Propagation using Gaussian Mixture Models
A novel adaptive scheme is presented in order to refine and to coarse the number of Gaussian components in a Gaussian mixture and it is integrated with a previous adaptive Gaussian sum for uncertainty propagation through dynamical systems. The previously presented adaptive Gaussian sum for uncertainty propagation adapts the weights of different components under the assumption that the number of...
متن کاملGaussian Mixture Reduction Using Reverse Kullback-Leibler Divergence
We propose a greedy mixture reduction algorithm which is capable of pruning mixture components as well as merging them based on the Kullback-Leibler divergence (KLD). The algorithm is distinct from the well-known Runnalls’ KLD based method since it is not restricted to merging operations. The capability of pruning (in addition to merging) gives the algorithm the ability of preserving the peaks ...
متن کاملMixture model averaging for clustering
Mixture Model Averaging for Clustering Yuhong Wei University of Guelph, 2012 Advisor: Dr. Paul D. McNicholas Model-based clustering is based on a finite mixture of distributions, where each mixture component corresponds to a different group, cluster, subpopulation, or part thereof. Gaussian mixture distributions are most often used. Criteria commonly used in choosing the number of components in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Data Analysis and Classification
دوره 4 شماره
صفحات -
تاریخ انتشار 2010