Anthrax protective antigen forms oligomers during intoxication of mammalian cells.

نویسندگان

  • J C Milne
  • D Furlong
  • P C Hanna
  • J S Wall
  • R J Collier
چکیده

The protective antigen component (PA) of anthrax toxin binds to receptors on target cells and conveys the toxin's edema factor (EF) and lethal factor (LF) components into the cytoplasm. PA (83 kDa) is processed by a cellular protease, yielding a 63-kDa fragment (PA63), which binds EF and/or LF. When exposed to acidic pH, PA63 inserts into membranes and forms ion-conductive channels. By electron microscopy, a significant fraction of purified PA63 was found to be in the form of a multi-subunit ring-shaped oligomer (outer diameter, 10.4 nm). The rings are heptameric, as judged by inspection and by rotational power spectra. Purified PA63 showed a high M(r) band, apparently corresponding to the oligomer, on SDS-polyacrylamide gels, and oligomer of similar size was formed in cells in a time-dependent manner after addition of full-length PA. Inhibitors of internalization and endosome acidification blocked conversion of cell-associated PA to a high molecular weight species, and medium at pH 5.0 induced oligomer formation in the presence or absence of the inhibitors. These results correlate PA63 oligomerization with conditions required for translocation of EF and LF across lipid bilayers, implying that the PA63 oligomer may function in translocation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dominant negative mutant of Bacillus anthracis protective antigen inhibits anthrax toxin action in vivo.

PA63, a proteolytically activated 63-kDa form of anthrax protective antigen (PA), forms heptameric oligomers and has the ability to bind and translocate the catalytic moieties, lethal factor (LF), and edema factor (EF) into the cytosol of mammalian cells. Acidic pH triggers oligomerization and membrane insertion by PA63. A disordered amphipathic loop in domain II of PA (2beta2-2beta3 loop) is i...

متن کامل

Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax.

The protective antigen moiety of anthrax toxin translocates the toxin's enzymic moieties to the cytosol of mammalian cells by a mechanism that depends on its ability to heptamerize and insert into membranes. We identified dominant-negative mutants of protective antigen that co-assemble with the wild-type protein and block its ability to translocate the enzymic moieties across membranes. These m...

متن کامل

The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen.

The three proteins that comprise anthrax toxin, edema factor (EF), lethal factor (LF), and protective antigen (PA), assemble at the mammalian cell surface into toxic complexes. After binding to its receptor, PA is proteolytically activated, yielding a carboxyl-terminal 63-kDa fragment (PA(63)) that coordinates assembly of the complexes, promotes their endocytosis, and translocates EF and LF to ...

متن کامل

In Silico Prediction of B-Cell and T-Cell Epitopes of Protective Antigen of Bacillus anthracis in Development of Vaccines Against Anthrax

Protective antigen (PA), a subunit of anthrax toxin from Bacillus anthracis, is known as a dominant component in subunit vaccines in protection against anthrax. In order to avoid the side effects of live attenuated and killed organisms, the use of linear neutralizing epitopes of PA is recommended in order to design recombinant vaccines. The present study is aimed at determining the dominant epi...

متن کامل

Development of an edema factor-mediated cAMP-induction bioassay for detecting antibody-mediated neutralization of anthrax protective antigen.

Intoxication of mammalian cells by Bacillus anthracis requires the coordinate activity of three distinct bacterial proteins: protective antigen (PA), edema factor (EF), and lethal factor (LF). Among these proteins, PA has become the major focus of work on monoclonal antibodies and vaccines designed to treat or prevent anthrax infection since neither EF nor LF is capable of inducing cellular tox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 32  شماره 

صفحات  -

تاریخ انتشار 1994