Development of a Refractory High Entropy Superalloy

نویسندگان

  • Oleg N. Senkov
  • Dieter Isheim
  • David N. Seidman
  • Adam L. Pilchak
چکیده

Microstructure, phase composition and mechanical properties of a refractory high entropy superalloy, AlMo0.5NbTa0.5TiZr, are reported in this work. The alloy consists of a nano-scale mixture of two phases produced by the decomposition from a high temperature body-centered cubic (BCC) phase. The first phase is present in the form of cuboidal-shaped nano-precipitates aligned in rows along <100>-type directions, has a disordered BCC crystal structure with the lattice parameter a1 = 326.9 ̆ 0.5 pm and is rich in Mo, Nb and Ta. The second phase is present in the form of channels between the cuboidal nano-precipitates, has an ordered B2 crystal structure with the lattice parameter a2 = 330.4 ̆ 0.5 pm and is rich in Al, Ti and Zr. Both phases are coherent and have the same crystallographic orientation within the former grains. The formation of this modulated nano-phase structure is discussed in the framework of nucleation-and-growth and spinodal decomposition mechanisms. The yield strength of this refractory high entropy superalloy is superior to the yield strength of Ni-based superalloys in the temperature range of 20 ̋C to 1200 ̋C.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Temperature Oxidation and Corrosion Properties of High Entropy Superalloys

The present work investigates the high temperature oxidation and corrosion behaviour of high entropy superalloys (HESA). A high content of various solutes in HESA leads to formation of complex oxides, however the Cr and Al activities of HESA are sufficient to promote protective chromia or alumina formation on the surface. By comparing the oxidation and corrosion resistances of a Ni-based supera...

متن کامل

Hot Deformation Behavior of Ni80A Superalloy During Non-Isothermal Side Pressing

In the present study, the microstructural changes of a Nickel based superalloy Nimonic80A during a non-isothermal deformation were studied. Therefore, microstructure evolutionduring hot side pressing test was predicted with combined methods of finite element analysis andprocessing map of the material. The predicted results were validated through experimentalmicrostructural studies. The results ...

متن کامل

Joint Development of a Fourth Generation Single Crystal Superalloy

A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was ...

متن کامل

Atomic and electronic basis for the serrations of refractory high-entropy alloys

Refractory high-entropy alloys present attractive mechanical properties, i.e., high yield strength and fracture toughness, making them potential candidates for structural applications. Understandings of atomic and electronic interactions are important to reveal the origins for the formation of high-entropy alloys and their structure−dominated mechanical properties, thus enabling the development...

متن کامل

Effects of microstructures on fatigue crack initiation and short crack propagation at room temperature in an advanced disc superalloy

Fatigue crack initiation and early short crack propagation behaviour in two microstructural variants of a recently developed Low Solvus, High Refractory (LSHR) disc superalloy at room temperature has been investigated by three-point bending with replication procedure. The results shows that fine gained (FG) LSHR possesses higher fatigue life due to its better crack initiation resistance, limite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016