Learning to Generate Textual Data
نویسندگان
چکیده
To learn text understanding models with millions of parameters one needs massive amounts of data. In this work, we argue that generating data can compensate for this need. While defining generic data generators is difficult, we propose to allow generators to be “weakly” specified in the sense that a set of parameters controls how the data is generated. Consider for example generators where the example templates, grammar, and/or vocabulary is determined by this set of parameters. Instead of manually tuning these parameters, we learn them from the limited training data at our disposal. To achieve this, we derive an efficient algorithm called GENERE that jointly estimates the parameters of the model and the undetermined generation parameters. We illustrate its benefits by learning to solve math exam questions using a highly parametrized sequence-to-sequence neural network.
منابع مشابه
Towards Effective Recommendation of Social Data across Social Networking Sites
Users of Social Networking Sites (SNSs) like Facebook, MySpace, LinkedIn, or Twitter, are often overwhelmed by the huge amount of social data (friends’ updates and other activities). We propose using machine learning techniques to learn preferences of users and generate personalized recommendations. We apply four different machine learning techniques on previously rated activities and friends t...
متن کاملA Comparative Analysis of the Effect of Visual and Textual Information on the Health Information Perception of High School Girl Students in Tehran
Purpose: Information and information sources can be divided into three broad categories according to their nature or type: textual information (book, journal article, conference paper, dissertation, newspaper, etc.), visual information (infographic, photo, Cartoons, films, etc.) and audiovisual information. The purpose of this study is to determine the effect of reading textual information in c...
متن کاملBootstrap, Review, Decode: Using Out-of-Domain Textual Data to Improve Image Captioning
State-of-the-art approaches for image captioning require supervised training data consisting of captions with paired image data. These methods are typically unable to use unsupervised data such as textual data with no corresponding images, which is a much more abundant commodity. We here propose a novel way of using such textual data by artificially generating missing visual information. We eva...
متن کاملThe Effect of Visual Representation, Textual Representation, and Glossing on Second Language Vocabulary Learning
In this study, the researcher chose three different vocabulary techniques (Visual Representation, Textual Enhancement, and Glossing) and compared them with traditional method of teaching vocabulary. 80 advanced EFL Learners were assigned as four intact groups (three experimental and one control group) through using a proficiency test and a vocabulary test as a pre-test. In the visual group, stu...
متن کاملAn Algorithm for Constrained Association Rule Mining in Semi-structured Data
The need for sophisticated analysis of textual documents is becoming more apparent as data is being placed on the Web and digital libraries are surfacing. This paper presents an algorithm for generating constrained association rules from textual documents. The user speciies a set of constraints, concepts and/or structured values. Our algorithm creates matrices and lists based on these prespecii...
متن کاملVisual-textual Attention Driven Fine-grained Representation Learning
Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, which is a highly challenging task due to the quite subtle visual distinctions among similar subcategories. Most existing methods generally learn part detectors to discover discriminative regions for better classification accuracy. However, not all localized parts are benefici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016