Fuzzy-Membership Based Writer Identification from Handwritten Devnagari Script
نویسندگان
چکیده
The handwriting based person identification systems use their designer’s perceived structural properties of handwriting as features. In this paper, we present a system that uses those structural properties as features that graphologists and expert handwriting analyzers use for determining the writer’s personality traits and for making other assessments. The advantage of these features is that their definition is based on sound historical knowledge (i.e., the knowledge discovered by graphologists, psychiatrists, forensic experts, and experts of other domains in analyzing the relationships between handwritten stroke characteristics and the phenomena that imbeds individuality in stroke). Hence, each stroke characteristic reflects a personality trait. We have measured the effectiveness of these features on a subset of handwritten Devnagari and Latin script datasets from the Center for Pattern Analysis and Recognition (CPAR-2012), which were written by 100 people where each person wrote three samples of the Devnagari and Latin text that we have designed for our experiments. The experiment yielded 100% correct identification on the training set. However, we observed an 88% and 89% correct identification rate when we experimented with 200 training samples and 100 test samples on handwritten Devnagari and Latin text. By introducing the majority voting based rejection criteria, the identification accuracy increased to 97% on both script sets.
منابع مشابه
On-line Handwritten Devanagari Character Recognition using Fuzzy Directional Features
This paper describes a new feature set for use in the recognition of on-line handwritten Devanagari script based on Fuzzy Directional Features. Experiments are conducted for the automatic recognition of isolated handwritten character primitives (sub-character units). Initially we describe the proposed feature set, called the Fuzzy Directional Features (FDF) and then show how these features can ...
متن کاملStroke Analysis of Devnagari Handwritten Characters
Devnagari script is the major script of India and is widely used for various languages. In this work we propose a stroke based technique for analyzing handwritten Devnagari characters. After preprocessing the character is segmented in various strokes using our thinning and segmentation algorithm. We propose average compressed direction codes for segmented strokes to classify the strokes as left...
متن کاملConvolution Based Technique for Indic Script Identification from Handwritten Document Images
Determination of script type of document image is a complex real life problem for a multi-script country like India, where 23 official languages (including English) are present and 13 different scripts are used to write them. Including English and Roman those count become 23 and 13 respectively. The problem becomes more challenging when handwritten documents are considered. In this paper an app...
متن کاملOffline Handwritten Script Identification in Document Images
Automatic handwritten script identification from document images facilitates many important applications such as sorting, transcription of multilingual documents and indexing of large collection of such images, or as a precursor to optical character recognition (OCR). In this paper, we investigate a texture as a tool for determining the script of handwritten document image, based on the observa...
متن کاملHandwritten Devanagari Script Segmentation: A non-linear Fuzzy Approach
The paper concentrates on improvement of segmentation accuracy by addressing some of the key challenges of handwritten Devanagari word image segmentation technique. In the present work, we have developed a new feature based approach for identification of Matra pixels from a word image, design of a non-linear fuzzy membership functions for headline estimation and finally design of a non-linear f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JIPS
دوره 13 شماره
صفحات -
تاریخ انتشار 2017