Additive and multiplicative hazards modeling for recurrent event data analysis

نویسندگان

  • Hyun J Lim
  • Xu Zhang
چکیده

BACKGROUND Sequentially ordered multivariate failure time or recurrent event duration data are commonly observed in biomedical longitudinal studies. In general, standard hazard regression methods cannot be applied because of correlation between recurrent failure times within a subject and induced dependent censoring. Multiplicative and additive hazards models provide the two principal frameworks for studying the association between risk factors and recurrent event durations for the analysis of multivariate failure time data. METHODS Using emergency department visits data, we illustrated and compared the additive and multiplicative hazards models for analysis of recurrent event durations under (i) a varying baseline with a common coefficient effect and (ii) a varying baseline with an order-specific coefficient effect. RESULTS The analysis showed that both additive and multiplicative hazards models, with varying baseline and common coefficient effects, gave similar results with regard to covariates selected to remain in the model of our real dataset. The confidence intervals of the multiplicative hazards model were wider than the additive hazards model for each of the recurrent events. In addition, in both models, the confidence interval gets wider as the revisit order increased because the risk set decreased as the order of visit increased. CONCLUSIONS Due to the frequency of multiple failure times or recurrent event duration data in clinical and epidemiologic studies, the multiplicative and additive hazards models are widely applicable and present different information. Hence, it seems desirable to use them, not as alternatives to each other, but together as complementary methods, to provide a more comprehensive understanding of data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive-multiplicative rates model for recurrent events.

Recurrent events are frequently encountered in biomedical studies. Evaluating the covariates effects on the marginal recurrent event rate is of practical interest. There are mainly two types of rate models for the recurrent event data: the multiplicative rates model and the additive rates model. We consider a more flexible additive-multiplicative rates model for analysis of recurrent event data...

متن کامل

Bayesian model selection and averaging in additive and proportional hazards models.

Although Cox proportional hazards regression is the default analysis for time to event data, there is typically uncertainty about whether the effects of a predictor are more appropriately characterized by a multiplicative or additive model. To accommodate this uncertainty, we place a model selection prior on the coefficients in an additive-multiplicative hazards model. This prior assigns positi...

متن کامل

Multivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data

Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...

متن کامل

Some Issues in Marginal Recurrent Event Cox type Models

Recurrent event analysis has been a topic that has generated much attention in the last few years. The analysis of recurrent event data can be a complex task, with many different relationships and dependencies that need to be specified. One aspect of recurrent events that is difficult to specify, and even more complex to justify, is the relationship a subject’s rate of failure will have as even...

متن کامل

Modeling Compositionality with Multiplicative Recurrent Neural Networks

We present the multiplicative recurrent neural network as a general model for compositional meaning in language, and evaluate it on the task of fine-grained sentiment analysis. We establish a connection to the previously investigated matrixspace models for compositionality, and show they are special cases of the multiplicative recurrent net. Our experiments show that these models perform compar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011