Pyruvate formate-lyase-activating enzyme: strictly anaerobic isolation yields active enzyme containing a [3Fe-4S](+) cluster.

نویسندگان

  • J B Broderick
  • T F Henshaw
  • J Cheek
  • K Wojtuszewski
  • S R Smith
  • M R Trojan
  • R M McGhan
  • A Kopf
  • M Kibbey
  • W E Broderick
چکیده

Pyruvate formate-lyase-activating enzyme (PFL-AE) from Escherichia coli (E. coli) catalyzes the stereospecific abstraction of a hydrogen atom from Gly734 of pyruvate formate-lyase (PFL) in a reaction that is strictly dependent on the cosubstrate S-adenosyl-l-methionine (AdoMet). Although PFL-AE is an iron-dependent enzyme, isolation of the enzyme with its metal center intact has proven difficult due to the oxygen sensitivity and lability of the metal center. We report here the first isolation of PFL-AE under nondenaturing, strictly anaerobic conditions. Iron and sulfide analysis as well as UV-visible, EPR, and resonance Raman data support the presence of a [3Fe-4S](+) cluster in the purified enzyme. The isolated native enzyme, but not apo-enzyme, exhibits a high specific activity (31 U/mg) in the absence of added iron, indicating that the native cluster is necessary and sufficient for enzymatic activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of 3Fe-4S to 4Fe-4S Clusters in Native Pyruvate Formate-Lyase Activating Enzyme: Mössbauer Characterization and Implications for Mechanism

Pyruvate formate-lyase activating enzyme utilizes an iron-sulfur cluster and S-adenosylmethionine to generate the catalytically essential glycyl radical on pyruvate formate-lyase. Variable-temperature (4.2200 K) and variable-field (0.05-8 T) Mössbauer spectroscopy has been used to characterize the iron-sulfur clusters present in anaerobically isolated pyruvate formate-lyase activating enzyme an...

متن کامل

The iron-sulfur cluster of pyruvate formate-lyase activating enzyme in whole cells: cluster interconversion and a valence-localized [4Fe-4S]2+ state.

Pyruvate formate-lyase activating enzyme (PFL-AE) catalyzes the generation of a catalytically essential glycyl radical on pyruvate formate-lyase (PFL). Purified PFL-AE contains an oxygen-sensitive, labile [4Fe-4S] cluster that undergoes cluster interconversions in vitro, with only the [4Fe-4S](+) cluster state being catalytically active. Such cluster interconversions could play a role in regula...

متن کامل

Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation.

Pyruvate formate lyase activating enzyme is a member of a novel superfamily of enzymes that utilize S-adenosylmethionine to initiate radical catalysis. This enzyme has been isolated with several different iron-sulfur clusters, but single turnover monitored by EPR has identified the [4Fe-4S](1+) cluster as the catalytically active cluster; this cluster is believed to be oxidized to the [4Fe-4S](...

متن کامل

An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme.

Pyruvate formate-lyase activating enzyme (PFL-AE) generates the catalytically essential glycyl radical on pyruvate formate-lyase via the interaction of the catalytically active [4Fe-4S]+ cluster with S-adenosylmethionine (AdoMet). Like other members of the Fe-S/AdoMet family of enzymes, PFL-AE is thought to function via generation of an AdoMet-derived 5'-deoxyadenosyl radical intermediate; howe...

متن کامل

Structural studies of the interaction of S-adenosylmethionine with the [4Fe-4S] clusters in biotin synthase and pyruvate formate-lyase activating enzyme.

The diverse reactions catalyzed by the radical-SAM superfamily of enzymes are thought to proceed via a set of common mechanistic steps, key among which is the reductive cleavage of S-adenosyl-L-methionine (SAM) by a reduced [4Fe-4S] cluster to generate an intermediate deoxyadenosyl radical. A number of spectroscopic studies have provided evidence that SAM interacts directly with the [4Fe-4S] cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 269 2  شماره 

صفحات  -

تاریخ انتشار 2000