Particle Swarm Optimization Methods for Pattern Recognition and Image Processing
نویسنده
چکیده
Pattern recognition has as its objective to classify objects into different categories and classes. It is a fundamental component of artificial intelligence and computer vision. This thesis investigates the application of an efficient optimization method, known as Particle Swarm Optimization (PSO), to the field of pattern recognition and image processing. First a clustering method that is based on PSO is proposed. The application of the proposed clustering algorithm to the problem of unsupervised classification and segmentation of images is investigated. A new automatic image generation tool tailored specifically for the verification and comparison of various unsupervised image classification algorithms is then developed. A dynamic clustering algorithm which automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference is then developed. Finally, PSO-based approaches are proposed to tackle the color image quantization and spectral unmixing problems. In all the proposed approaches, the influence of PSO parameters on the performance of the proposed algorithms is evaluated. Key terms: Clustering, Color Image Quantization, Dynamic Clustering, Image Processing, Image Segmentation, Optimization Methods, Particle Swarm Optimization, Pattern Recognition, Spectral Unmixing, Unsupervised Image Classification. Thesis supervisor: Prof. A. P. Engelbrecht Thesis co-supervisor: Dr. Ayed Salman Department of Computer Engineering, Kuwait University, Kuwait Department of Computer Science Degree: Philosophiae Doctor University of Pretoria etd – Omran, M G H (2005)
منابع مشابه
Image Enhancement Techniques Using Particle Swarm Optimization Technique
The image quality enhancement process is considered as one of the basic requirement for high-level image processing techniques that demand good quality in images. High-level image processing techniques include feature extraction, morphological processing, pattern recognition, automation engineering, and many more. Many classical enhancement methods are available for enhancing the quality of ima...
متن کاملMultilevel Minimum Cross Entropy Thresholding using Artificial Bee Colony Algorithm
The minimum cross entropy thresholding (MCET) has been widely applied in image processing. In this paper, a new multilevel MCET algorithm based on the artificial bee colony (ABC) algorithm is proposed. The proposed thresholding algorithm is called ABC-based MCET algorithm. Four different methods including the exhaustive search, the honey bee mating optimization (HBMO), the particle swarm optimi...
متن کاملCombining Biometric Fractal Pattern and Particle Swarm Optimization-Based Classifier for Fingerprint Recognition
This paper proposes combining the biometric fractal pattern and particle swarm optimization PSO -based classifier for fingerprint recognition. Fingerprints have arch, loop, whorl, and accidental morphologies, and embed singular points, resulting in the establishment of fingerprint individuality. An automatic fingerprint identification system consists of two stages: digital image processing DIP ...
متن کاملMultilevel image threshold selection based on the shuffled frog-leaping algorithm
Multilevel thresholding is an important technique for image processing and pattern recognition. The maximum entropy thresholding (MET) has been widely applied in the literature. In this paper, a new multilevel MET algorithm based on the technology of the shuffled frog-leaping (SFLO) algorithm is proposed: called the maximum entropy based shuffled frog-leaping algorithm thresholding (MESFLOT) me...
متن کاملA Comparative Study of Hard and Soft Clustering Using Swarm Optimization
Bijayalaxmi Panda, Soumya Sahoo, Sovan Kumar Patnaik Abstract— Cluster analysis is one of the major techniques in pattern recognition, which is basically considered as one of the unsupervised learning technique. We can apply clustering techniques in various areas like clustering medicine, business, engineering systems and image processing, etc.,The traditional hard clustering methods restrict t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004