Global stability of systems related to the Navier-Stokes equations
نویسنده
چکیده
A generalized Lyapunov method is outlined which predicts global stability of a broad class of dissipative dynamical systems. The method is applied to the complex Lorenz model and to the Navier-Stokes equations. In both cases one finds compact domains in phase space which contain the ω sets of all trajectories, in particular the fixed points, limit cycles, and strange attractors.
منابع مشابه
Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملAnalyticity estimates for the Navier-Stokes equations
We study spatial analyticity properties of solutions of the Navier-Stokes equation and obtain new growth rate estimates for the analyticity radius. We also study stability properties of strong global solutions of the Navier-Stokes equation with data in H, r ≥ 1/2 and prove a stability result for the analyticity radius.
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملLipschitz stability of optimal controls for the steady - state Navier - Stokes equations
An optimal control problem with quadratic cost functional for the steady-state Navier-Stokes equations with no-slip boundary condition is considered. Lipschitz stability of locally optimal controls with respect to certain perturbations of both the cost functional and the equation is proved provided a second-order sufficient optimality condition holds. For a sufficiently small Reynolds number, e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001