Calderón-type inequalities for affine frames
نویسندگان
چکیده
Abstract We prove sharp upper and lower bounds for generalized Calderón’s sums associated to frames on LCA groups generated by affine actions of cocompact subgroup translations and general measurable families of automorphisms. The proof makes use of techniques of analysis on metric spaces, and relies on a counting estimate of lattice points inside metric balls. We will deduce as special cases Calderón-type inequalities for families of expanding automorphisms as well as for LCA-Gabor systems.
منابع مشابه
Wavelet Frames on Groups and Hypergroups via Discretization of Calderón Formulas
Continuous wavelets are often studied in the general framework of representation theory of square-integrable representations, or by using convolution relations and Fourier transforms. We consider the well-known problem whether these continuous wavelets can be discretized to yield wavelet frames. In this paper we us Calderón-Zygmund singular integral operators and atomic decompositions on spaces...
متن کاملCo - affine systems in R d Brody Dylan
The proof of non-existence for co-affine frames is extended from the one-dimensional setting [GLWW] to the case of expansive dilation matrices in Rd. The problem of identifying subspaces on which co-affine systems may admit frame-type inequalities is then considered. In the context of multiresolution analysis it is shown that frame-type inequalities may hold on certain fundamental subspaces of ...
متن کاملPseudoframe multiresolution structure on abelian locally compact groups
Let $G$ be a locally compact abelian group. The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$. Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level. Also, the construction of affine frames for $L^2(G)$ bas...
متن کاملRealization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملInequalities for mixed p - affine surface area ∗
We prove new Alexandrov-Fenchel type inequalities and new affine isoperimetric inequalities for mixed p-affine surface areas. We introduce a new class of bodies, the illumination surface bodies, and establish some of their properties. We show, for instance, that they are not necessarily convex. We give geometric interpretations of Lp affine surface areas, mixed p-affine surface areas and other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017