A Framework for Simulation-based Network Control via Hindsight Optimization
نویسندگان
چکیده
We describe a novel approach for designing network control algorithms that incorporate traffic models. Traffic models can be viewed as stochastic predictions about the future network state, and can be used to generate traces of potential future network behavior. Our approach is to use such traces to heuristically evaluate candidate control actions using a technique called hindsight optimization. In hindsight optimization, the finite-horizon “utility” achievable from a given system state is estimated by averaging estimates obtained from a number of traces starting at the state. For each trace, the utility value of the state is estimated by determining the optimal “hindsight control”—this is the control that would be applied by an optimal controller that somehow “knew” the whole trace beforehand—and then measuring the utility obtained under that control. Averaging over many samples then gives a simulation-based “hindsight-optimal” utility for the starting state that upper bounds the true utility value of the state. This technique for estimating state utility can then be used to select the control—simply select the control that gives the highest utility. Our hindsight-optimization approach to designing simulation-based control algorithms can be applied to a wide variety of network decision problems. We present empirical results showing effectiveness for two example control problems— multiclass scheduling and congestion control.
منابع مشابه
A harmony search-based approach for real-time volt & var control in distribution network by considering distributed generations units
In recent decade, development of telecommunications infrastructure has led to rapid exchange of data between the distribution network components and the control center in many developed countries. These changes, considering the numerous benefits of the Distributed Generators (DGs), have made more motivations for distribution companies to utilize these kinds of generators more than ever before. ...
متن کاملMarkov Games: Receding Horizon Approach
We consider a receding horizon approach as an approximate solution to two-person zero-sum Markov games with infinite horizon discounted cost and average cost criteria. We first present error bounds from the optimal equilibrium value of the game when both players take correlated equilibrium receding horizon policies that are based on exact or approximate solutions of receding finite horizon subg...
متن کاملBurst-level congestion control using hindsight optimization
We consider the burst-level congestion control problem in a communication network with multiple traffic sources, modeled as infinite banks of fluid traffic. The controlled traffic shares a common bottleneck node with highpriority cross traffic modeled as Markov-modulated fluid. We introduce a simulation-based congestion control scheme capable of performing effectively under rapidly-varying serv...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000