Admissible Representations and Geometry of Flag Manifolds

نویسنده

  • JOSEPH A. WOLF
چکیده

We describe geometric realizations for various classes of admissible representations of reductive Lie groups. The representations occur on partially holomorphic cohomology spaces corresponding to partially holomorphic homogeneous vector bundles over real group orbits in complex flag manifolds. The representations in question include standard tempered and limits of standard tempered representations, and representations induced from finite dimensional representations of real parabolic subgroups. Section

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

The Quantum Orbit Method for Generalized Flag Manifolds

Generalized flag manifolds endowed with the Bruhat-Poisson bracket are compact Poisson homogeneous spaces, whose decompositions in symplectic leaves coincide with their stratifications in Schubert cells. In this note it is proved that the irreducible ∗-representations of the corresponding quantized flag manifolds are also parametrized by their Schubert cells. An important step is the determinat...

متن کامل

Flag Manifolds and Toric Geometry

1.1. Flag Manifolds. One of the best understood examples of algebraic varieties is the flag manifold. One is first interested in flag varieties as they are well-defined examples for many basic concepts. Besides this, however, one can find that they deserve individual attention, for they naturally arise in many circumstances, e.g. in the theory of characteristic classes of vector bundles, mirror...

متن کامل

Cycle space constructions for exhaustions of flag domains

In the study of complex flag manifolds, flag domains and their cycle spaces, a key point is the fact that the cycle space MD of a flag domain D is a Stein manifold. That fact has a long history; see [4]. The earliest approach ([9], [11]) relied on construction of a strictly plurisubharmonic exhaustion function on MD, starting with a q–convex exhaustion function on D, where q is the dimension of...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013