Applications of the Classical Umbral Calculus

نویسنده

  • IRA M. GESSEL
چکیده

ai. Blissard’s notation has been known variously as Lucas’s method, the symbolic method (or symbolic notation), and the umbral calculus. We shall use Rota and Taylor’s term “classical umbral calculus” [36] to distinguish it from the more elaborate mathematical edifice that the term “umbral calculus” has come to encompass [31, 32, 34]. The goal of this article is to show, by numerous examples, how the classical umbral calculus can be used to prove interesting formulas not as easily proved by other methods. Our applications are in three general areas: bilinear generating functions, identities for Bernoulli numbers and their relatives, and congruences for sequences such as Euler and Bell numbers. The classical umbral calculus is intimately connected with exponential generating functions; thus an = an is equivalent to e = ∞

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebras and the Umbral Calculus ∗

We apply Baxter algebras to the study of the umbral calculus. We give a characterization of the umbral calculus in terms of Baxter algebra. This characterization leads to a natural generalization of the umbral calculus that include the classical umbral calculus in a family of λ-umbral calculi parameterized by λ in the base ring.

متن کامل

Baxter Algebras and the Umbral Calculus

We apply Baxter algebras to the study of the umbral calculus. We give a characterization of the umbral calculus in terms of Baxter algebra. This characterization leads to a natural generalization of the umbral calculus that include the classical umbral calculus in a family of-umbral calculi parameterized by in the base ring.

متن کامل

Formal Calculus and Umbral Calculus

We use the viewpoint of the formal calculus underlying vertex operator algebra theory to study certain aspects of the classical umbral calculus. We begin by calculating the exponential generating function of the higher derivatives of a composite function, following a very short proof which naturally arose as a motivating computation related to a certain crucial “associativity” property of an im...

متن کامل

Umbral presentations for polynomial sequences

Using random variables as motivation, this paper presents an exposition of formalisms developed in [RT1, RT2] for the classical umbral calculus. A variety of examples are presented, culminating in several descriptions of sequences of binomial type in terms of umbral polynomials.

متن کامل

On the computation of classical, boolean and free cumulants

This paper introduces a simple and computationally efficient algorithm for conversion formulae between moments and cumulants. The algorithm provides just one formula for classical, boolean and free cumulants. This is realized by using a suitable polynomial representation of Abel polynomials. The algorithm relies on the classical umbral calculus, a symbolic language introduced by Rota and Taylor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001