Effect of NBCe1 deletion on renal citrate and 2‐oxoglutarate handling
نویسندگان
چکیده
UNLABELLED The bicarbonate transporter, NBCe1 (SLC4A4), is necessary for at least two components of the proximal tubule contribution to acid-base homeostasis, filtered bicarbonate reabsorption, and ammonia metabolism. This study's purpose was to determine NBCe1's role in a third component of acid-base homeostasis, organic anion metabolism, by studying mice with NBCe1 deletion. Because NBCe1 deletion causes metabolic acidosis, we also examined acid-loaded wild-type adult mice to determine if the effects of NBCe1 deletion were specific to NBCe1 deletion or were a non-specific effect of the associated metabolic acidosis. Both NBCe1 KO and acid-loading decreased citrate excretion, but in contrast to metabolic acidosis alone, NBCe1 KO decreased expression of the apical citrate transporter, NaDC-1. Thus, NBCe1 expression is necessary for normal NaDC-1 expression, and NBCe1 deletion induces a novel citrate reabsorptive pathway. Second, NBCe1 KO increased 2-oxoglutarate excretion. This could not be attributed to the metabolic acidosis as experimental acidosis decreased excretion. Increased 2-oxoglutarate excretion could not be explained by changes in plasma 2-oxoglutarate levels, the glutaminase I or the glutaminase II generation pathways, 2-oxoglutarate metabolism, its putative apical 2-oxoglutarate transporter, OAT10, or its basolateral transporter, NaDC-3. IN SUMMARY (1) NBCe1 is necessary for normal proximal tubule NaDC-1 expression; (2) NBCe1 deletion results in stimulation of a novel citrate reabsorptive pathway; and (3) NBCe1 is necessary for normal 2-oxoglutarate metabolism through mechanisms independent of expression of known transport and metabolic pathways.
منابع مشابه
Defective membrane expression of the Na(+)-HCO(3)(-) cotransporter NBCe1 is associated with familial migraine.
Homozygous mutations in SLC4A4, encoding the electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1, have been known to cause proximal renal tubular acidosis (pRTA) and ocular abnormalities. In this study, we report two sisters with pRTA, ocular abnormalities, and hemiplegic migraine. Genetic analysis ruled out pathological mutations in the known genes for familial hemiplegic migraine, but identified...
متن کاملANG II and calmodulin/CaMKII regulate surface expression and functional activity of NBCe1 via separate means.
We recently reported that ANG II inhibits NBCe1 current and surface expression in Xenopus laevis oocytes (Perry C, Blaine J, Le H, and Grichtchenko II. Am J Physiol Renal Physiol 290: F417-F427, 2006). Here, we investigated mechanisms of ANG II-induced changes in NBCe1 surface expression. We showed that the PKC inhibitor GF109203X blocks and EGTA reduces surface cotransporter loss in ANG II-tre...
متن کاملAdaptive redistribution of NBCe1-A and NBCe1-B in rat kidney proximal tubule and striated ducts of salivary glands during acid-base disturbances.
The cellular distribution of the NH2-terminal electrogenic Na+-HCO3(-) cotransporter (NBCe1) variants NBCe1-A and NBCe1-B has been investigated in rat kidney and submandibular gland (SMG) under physiological conditions and after systemic acid-base perturbations. Moreover, the in vivo data were complemented in vitro by using an immortalized cell line derived from the S1 segment of the proximal t...
متن کاملMolecular mechanisms of renal and extrarenal manifestations caused by inactivation of the electrogenic Na+-HCO3− cotransporter NBCe1
The electrogenic Na(+)-HCO3 (-) cotransporter NBCe1 plays an essential role in bicarbonate absorption from renal proximal tubules, but also mediates the other biological processes in extrarenal tissues such as bicarbonate secretion from pancreatic ducts, maintenance of tissue homeostasis in eye, enamel maturation in teeth, or local pH regulation in synapses. Homozygous mutation in NBCe1 cause p...
متن کاملG418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis.
Autosomal recessive proximal renal tubular acidosis is caused by mutations in the SLC4A4 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe1-A. The mutations that have been characterized thus far result in premature truncation, mistargeting, or decreased function of the cotransporter. Despite bicarbonate treatment to correct the metabolic acidosis, extrarenal manifestations pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016