Evolutionary Dynamics of Extremal Optimization
نویسنده
چکیده
Dynamic features of the recently introduced extremal optimization heuristic are analyzed. Numerical studies of this evolutionary search heuristic show that it performs optimally at a transition between a jammed and an diffusive state. Using a simple, annealed model, some of the key features of extremal optimization are explained. In particular, it is verified that the dynamics of local search possesses a generic critical point under the variation of its sole parameter, separating phases of too greedy (non-ergodic, jammed) and too random (ergodic, diffusive) exploration. Analytic comparison with other local search methods, such as a Metropolis algorithm, within this model suggests that the existence of the critical point is the essential distinction leading to the optimal performance of the extremal optimization heuristic.
منابع مشابه
Extremal Optimization Dynamics in Neutral Landscapes: The Royal Road Case
In recent years a new view of evolutionary dynamics has emerged based on both neutrality and balance between adaptation and exaptation. Differently from the canonical adaptive paradigm where the genotypic variability is strictly related to the change at fitness level, such a paradigm has raised awareness of the importance of both selective neutrality and co-option by exaptation. This paper inve...
متن کاملSelf-Organized Criticality, Optimization and Biodiversity
By driven to extinction species less or poorly adapted, the Darwinian evolutionary theory is intrinsically an optimization theory. We investigate two optimization algorithms with such evolutionary characteristics: the Bak-Sneppen and the Extremal Optimization. By comparing their mean fitness in the steady state regime, we conclude that the Bak-Sneppen dynamics is more efficient than the Extrema...
متن کاملMulti-objective Optimization with Combination of Particle Swarm and Extremal Optimization for Constrained Engineering Design
Engineering optimization problems usually have several conflicting objectives, such that no single solution can be considered optimum with respect to all objectives. In recent years, many efforts have focused on hybrid metaheuristic approaches for their robustness and efficiency to solve the above-mentioned multiobjective optimization problems (MOPs). This paper proposes a novel hybrid algorith...
متن کاملEvolutionary Population Dynamics and Multi-Objective Optimisation Problems
Problems for which many objective functions are to be simultaneously optimised are widely encountered in science and industry. These multiobjective problems have also been the subject of intensive investigation and development recently for metaheuristic search algorithms such as ant colony optimisation, particle swarm optimisation and extremal optimisation. In this chapter, a unifying framework...
متن کاملA Generalized Extremal Optimization-inspired Algorithm for Predictive Maintenance Scheduling Problems
A bit-encoded heuristic evolutionary optimization algorithm inspired by the Generalized Extremal Optimization method is presented. The proposed evolutionary approach aims at optimizing a predictive maintenance scheduling problem characterized by an analytically intractable objective function. A preliminary comparison with a standard genetic algorithm on a set of high-dimension cases of the cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009