Derivative-free methods for bound constrained mixed-integer optimization
نویسندگان
چکیده
We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems arises frequently in many industrial and scientific applications and this motivates the increasing interest in the study of derivative-free methods for their solution. The continuous variables are handled by a linesearch strategy whereas to tackle the discrete ones we employ a local search-type approach. We propose different algorithms which are characterized by the way the current iterate is updated and by the stationarity conditions satisfied by the limit points of the sequences they produce.
منابع مشابه
Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems
Methods which do not use any derivative information are becoming popular among researchers, since they allow to solve many real-world engineering problems. Such problems are frequently characterized by the presence of discrete variables, which can further complicate the optimization process. In this paper, we propose derivative-free algorithms for solving continuously differentiable Mixed Integ...
متن کاملDerivative-free Optimization Methods for Handling Fixed Costs in Optimal Groundwater Remediation Design
We consider a hydraulic capture application for water resources management that includes a fixed installation cost in addition to operating costs. The result is a simulationbased, nonlinear, mixed-integer optimization problem. The motivation is that our preliminary studies have shown that convergence to an unsatisfactory, local minimum with many wells operating at low pumping rates is common wh...
متن کاملGeneral Solution Methods for Mixed Integer Quadratic Programming and Derivative Free Mixed Integer Non-Linear Programming Problems
In a number of situations the derivative of the objective function of an optimization problem is not available. This thesis presents a novel algorithm for solving mixed integer programs when this is the case. The algorithm is the first developed for problems of this type which uses a trust region methodology. Three implementations of the algorithm are developed and deterministic proofs of conve...
متن کاملMILP models for the selection of a small set of well-distributed points
Motivated by the problem of fitting a surrogate model to a set of feasible points in the context of constrained derivative-free optimization, we consider the problem of selecting a small set of points with good space-filling and orthogonality properties from a larger set of feasible points. We propose four mixed-integer linear programming models for this task and we show that the corresponding ...
متن کاملA Duality Theory with Zero Duality Gap for Nonlinear Programming
Duality is an important notion for constrained optimization which provides a theoretical foundation for a number of constraint decomposition schemes such as separable programming and for deriving lower bounds in space decomposition algorithms such as branch and bound. However, the conventional duality theory has the fundamental limit that it leads to duality gaps for nonconvex optimization prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 53 شماره
صفحات -
تاریخ انتشار 2012