Multi-objective pattern and feature selection by a genetic algorithm

نویسندگان

  • Hisao Ishibuchi
  • Tomoharu Nakashima
چکیده

This paper discusses a genetic-algorithm-based approach for selecting a small number of representative instances from a given data set in a pattern classification problem. The genetic algorithm also selects a small number of significant features. That is, instances and features are simultaneously selected for finding a compact data set. The selected instances and features are used as a reference set in a nearest neighbor classifier. Our goal is to improve the classification performance (i.e., generalization ability) of our nearest neighbor classifier by searching for an appropriate reference set. In this paper, we first describe the implementation of our genetic algorithm for instance and feature selection. Next we discuss the definition of a fitness function in our genetic algorithm. Then we examine the classification performance of nearest neighbor classifiers designed by our approach through computer simulations on artificial data sets and real-world data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...

متن کامل

Determining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm

Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...

متن کامل

An optimization technique for vendor selection with quantity discounts using Genetic Algorithm

Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...

متن کامل

Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange

Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...

متن کامل

A Feature Selection Method Based on ∩ - Fuzzy Similarity Measures Using Multi Objective Genetic Algorithm

37 Abstract — Feature selection (FS) is considered to be an important preprocessing step in machine learning and pattern recognition, and feature evaluation is the key issue for constructing a feature selection algorithm. Feature selection process can also reduce noise and this way enhance the classification accuracy. In this article, feature selection method based on ∩ fuzzy similarity measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000