Advanced glycation end products induce glomerular endothelial cell hyperpermeability by upregulating matrix metalloproteinase activity.

نویسندگان

  • Pengli Luo
  • Hui Peng
  • Canming Li
  • Zengchun Ye
  • Hua Tang
  • Ying Tang
  • Cailian Chen
  • Tanqi Lou
چکیده

The present study aimed to investigate the effects of advanced glycation end‑products (AGEs) on the permeability of glomerular endothelial cells (GEnCs) and determine whether enhanced permeability was due to degradation of tight junction (TJ) complexes by matrix metalloproteinases (MMPs). Cultured monolayers of GEnCs were exposed to AGEs at different doses and treatment durations in the presence or absence of the organic MMP‑2/9 inhibitor (2R)‑2‑((4‑biphenyl sulfony‑l)amino)‑3‑phenylproprionic acid) (BiPs). Expression of the TJ proteins occludin and claudin‑5 was determined by western blot analysis and immunofluorescence, while the permeability of the GEnCs was measured using transendothelial electrical resistance and by diffusion of 4 kDa fluorescein isothiocyanate (FITC)‑dextran. The activities of MMP‑2 and MMP‑9 were assayed using gelatin zymography. The results indicated that AGE‑treated cultures significantly reduced occludin and claudin‑5 immunoreactivity. Similarly, the surface expression of these proteins was significantly reduced and rows of TJs which normally connect endothelial cells became discontinuous or fractured following AGE exposure. Disruption of TJs was accompanied by significantly reduced transendothelial resistance and hyperpermeability to FITC‑dextran. Treatment with AGEs evoked a dose‑ and time‑dependent upregulation of MMP‑2 and MMP‑9. However, co‑administration of AGEs and BiPS, an inhibitor of MMP‑2/MMP‑9, inhibited the downregulation of occludin and claudin‑5, with a concomitant reversal of GEnC monolayer hyperpermeability. In conclusion, AGEs promoted glomerular hyperpermeability in vitro by the MMP‑mediated disruption of TJs. Chronic elevation of endothelial cell AGEs in diabetes mellitus may contribute to glomerular hyperpermeability by inducing the overexpression of MMPs, which degrade TJs, leading to proteinuria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats.

Dysfunctional endothelium is associated with and, likely, predates clinical complications of diabetes mellitus, by promoting increased vascular permeability and thrombogenicity. Irreversible advanced glycation end products (AGEs), resulting from nonenzymatic glycation and oxidation of proteins or lipids, are found in plasma, vessel wall, and tissues and have been linked to the development of di...

متن کامل

Advanced Glycation End Products Induce Endothelial-to-Mesenchymal Transition via Downregulating Sirt 1 and Upregulating TGF-β in Human Endothelial Cells

In the present study, we examined the advanced glycation end products- (AGEs-) induced endothelial-to-mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Results demonstrated that AGE-BSAs significantly reduced the cluster of differentiation 31 (CD 31) expression, whereas they promoted the expression of fibroblast-specific protein-1 (FSP-1), α-smooth muscle antibo...

متن کامل

Role of Src in Vascular Hyperpermeability Induced by Advanced Glycation End Products

The disruption of microvascular barrier in response to advanced glycation end products (AGEs) stimulation contributes to vasculopathy associated with diabetes mellitus. Here, to study the role of Src and its association with moesin, VE-cadherin and focal adhesion kinase (FAK) in AGE-induced vascular hyperpermeability, we verified that AGE induced phosphorylation of Src, causing increased permea...

متن کامل

Receptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein

Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...

متن کامل

Receptor for Advanced Glycation End Products - Membrane Type1 Matrix Metalloproteinase Axis Regulates Tissue Factor Expression via RhoA and Rac1 Activation in High-Mobility Group Box-1 Stimulated Endothelial Cells

BACKGROUND Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1) plays a key role in the systemic inflammation. Tissue factor (TF) is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP) associates with advanced glycation endproducts (AGE) triggered-TF protein expression and phosphorylation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular medicine reports

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 2015