Diophantine Approximation in Banach Spaces
نویسندگان
چکیده
In this paper, we extend the theory of simultaneous Diophantine approximation to infinite dimensions. Moreover, we discuss Dirichlet-type theorems in a very general framework and define what it means for such a theorem to be optimal. We show that optimality is implied by but does not imply the existence of badly approximable points.
منابع مشابه
A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces
In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.
متن کاملNew three-step iteration process and fixed point approximation in Banach spaces
In this paper we propose a new iteration process, called the $K^{ast }$ iteration process, for approximation of fixed points. We show that our iteration process is faster than the existing well-known iteration processes using numerical examples. Stability of the $K^{ast}$ iteration process is also discussed. Finally we prove some weak and strong convergence theorems for Suzuki ge...
متن کاملErgodic Theory on Homogeneous Spaces and Metric Number Theory
Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...
متن کاملApproximation of an additive mapping in various normed spaces
In this paper, using the fixed point and direct methods, we prove the generalized Hyers-Ulam-Rassias stability of the following Cauchy-Jensen additive functional equation: begin{equation}label{main} fleft(frac{x+y+z}{2}right)+fleft(frac{x-y+z}{2}right)=f(x)+f(z)end{equation} in various normed spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem t...
متن کاملOptimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces
In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013