A Neural Stochastic Optimization Framework for Oil Parameter Estimation

نویسندگان

  • Rafael E. Banchs
  • Hector Klie
  • Adolfo Rodriguez
  • Sunil G. Thomas
  • Mary F. Wheeler
چکیده

The main objective of the present work is to propose and evaluate a neural stochastic optimization framework for reservoir parameter estimation, for which a history matching procedure is implemented by combining three independent sources of spatial and temporal information: production data, time-lapse seismic and sensor information. In order to efficiently perform large-scale parameter estimation, a coupled multilevel, stochastic and learning search methodology is proposed. At a given resolution level, the parameter space is globally explored and sampled by the simultaneous perturbation stochastic approximation (SPSA) algorithm. The estimation and sampling performed by SPSA is further enhanced by a neural learning engine that evaluates the objective function sensitiveness with respect to parameter estimates in the vicinity of the most promising optimal solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran

In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...

متن کامل

Dynamic Gradient Estimation in Machine Learning

The optimization problems arising in machine learning form some of the most theoretically challenging and computationally demanding problems in numerical computing today. Due to the complexity of the models and the problem domains to which they are applied, approximation methods are required during optimization. This review focuses on optimization schemes involving dynamic gradient estimation. ...

متن کامل

A Stochastic Model for Water Resources Management

Irrigation water management is crucial for agricultural production and livelihood security in many regions and countries throughout the world. Over the past decades, controversial and conflictladen water-allocation issues among competing municipal, industrial and agricultural interests have raised increasing concerns. Particularly, growing population, varying natural conditions and shrinking wa...

متن کامل

Using neural network to estimate weibull parameters

As is well known, estimating parameters of the tree-parameter weibull distribution is a complicated task and sometimes contentious area with several methods vying for recognition. Weibull distribution involves in reliability studies frequently and has many applications in engineering. However estimating the parameters of Weibull distribution is crucial in classical ways. This distribution has t...

متن کامل

Using Intelligent Methods and Optimization of the Existing Empirical Correlations for Iranian Dead Oil Viscosity

Numerous empirical correlations exist for the estimation of crude oil viscosities. Most of these correlations are not based on the experimental and field data from Iranian geological zone. In this study several well-known empirical correlations including Beal, Beggs, Glasso, Labedi, Schmidt, Alikhan and Naseri were optimized and refitted with the Iranian oil field data. The results showed that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006