Structural insights into anaphase-promoting complex function and mechanism.

نویسنده

  • David Barford
چکیده

The anaphase-promoting complex or cyclosome (APC/C) controls sister chromatid segregation and the exit from mitosis by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. This unusually large E3 RING-cullin ubiquitin ligase is assembled from 13 different proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D box and KEN box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. Recent structural and biochemical studies of the APC/C are beginning to reveal an understanding of the roles of individual APC/C subunits and co-activators and how they mutually interact to mediate APC/C functions. This review focuses on the findings showing how information on the structural organization of the APC/C provides insights into the role of co-activators and core APC/C subunits in mediating substrate recognition. Mechanisms of regulating and modulating substrate recognition are discussed in the context of controlling the binding of the co-activator to the APC/C, and the accessibility and conformation of the co-activator when bound to the APC/C.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the structural basis for controlling chromosome division.

The process of chromosome division, termed mitosis, involves a complex sequence of events that is tightly controlled to ensure that the faithful segregation of duplicated chromosomes is coordinated with each cell division cycle. The large macromolecular complex responsible for regulating this process is the anaphase-promoting complex or cyclosome (APC/C). In humans, the APC/C is assembled from ...

متن کامل

Control the host cell cycle: viral regulation of the anaphase-promoting complex.

Viruses commonly manipulate cell cycle progression to create cellular conditions that are most beneficial to their replication. To accomplish this feat, viruses often target critical cell cycle regulators in order to have maximal effect with minimal input. One such master regulator is the large, multisubunit E3 ubiquitin ligase anaphase-promoting complex (APC) that targets effector proteins for...

متن کامل

Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation.

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase composed of approximately 13 distinct subunits required for progression through meiosis, mitosis, and the G1 phase of the cell cycle. Despite its central role in these processes, information concerning its composition and structure is limited. Here, we determined the structure of yeast APC/C by cryo-electron microscopy (...

متن کامل

Mitosis: Short-Circuiting Spindle Checkpoint Signaling

The spindle checkpoint forms an intricate signaling circuit to sense unattached kinetochores, to inhibit the anaphase-promoting complex/cyclosome (APC/C), and to delay anaphase onset. Using clever genetic experiments in the budding yeast, Lau and Murray define the endpoint of checkpoint signaling and provide key mechanistic insights into checkpoint inhibition of APC/C.

متن کامل

In silico study of kinetochore control, amplification, and inhibition effects in MCC assembly

Eukaryotic cells rely on a surveillance mechanism, the "Spindle Assembly Checkpoint"SACM in order to ensure accurate chromosome segregation by preventing anaphase initiation until all chromosomes are correctly attached to the mitotic spindle. In different organisms, a mitotic checkpoint complex (MCC) composed of Mad2, Bub3, BubR1/Mad3, and Cdc20 inhibits the anaphase promoting complex (APC/C) t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 366 1584  شماره 

صفحات  -

تاریخ انتشار 2011