Free surface lattice Boltzmann with enhanced bubble model
نویسندگان
چکیده
This paper presents an enhancement to the free surface lattice Boltzmann method (FSLBM) for the simulation of bubbly flows including rupture and breakup of bubbles. The FSLBM uses a volume of fluid approach to reduce the problem of a liquid-gas two-phase flow to a single-phase free surface simulation. In bubbly flows compression effects leading to an increase or decrease of pressure in the suspended bubbles cannot be neglected. Therefore, the free surface simulation is augmented by a bubble model that supplies the missing information by tracking the topological changes of the free surface in the flow. The new model presented here is capable of handling the effects of bubble breakup and coalesce without causing a significant computational overhead. Thus, the enhanced bubble model extends the applicability of the FSLBM to a new range of practically relevant problems, like bubble formation and development in chemical reactors or foaming processes.
منابع مشابه
Numerical Study of Bubble Separation and Motion Using Lattice Boltzmann Method
In present paper acombination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method have been used to simulate the motion of bubble and effect of wetting properties of the surface on bubble separation. By combining these models, three-dimensional model has been used in two-dimension for decreasing the computational cost. Firstly, it has been ensured that th...
متن کاملHydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method
Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...
متن کاملHeat Transfer Enhancement of Al2O3–H2O Nanofluid Free Convection in Two-Phase Flow with Internal Heat Generation Using Two Dimensional Lattice Boltzmann Method
A two-phase lattice Boltzmann model considering the interaction forces of nanofluid has been developed in this paper. It is applied to investigate the flow and natural convection heat transfer of Al2O3–H2O nanofluid in an enclosure containing internal heat generation. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann metho...
متن کاملNumerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter
Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...
متن کاملA lattice Boltzmann method for immiscible multiphase flow simulations using the level set method
We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 67 شماره
صفحات -
تاریخ انتشار 2014