Improved Ga-convexity Inequalities
نویسنده
چکیده
We consider a class of algebraic inequalities for functions of n variables depending on parameters that generalise the case of GA-convex functions. The functions in this class are GA-convex only in a subdomain of definition yet the inequality for GAconvexity still holds on the whole domain if suitable conditions are satisfied by the parameters. The method is elementary and allows us to give further extensions to a large class of functions. As an application we show the validity of an n-dimensional generalization of a conjectured inequality related to a problem given at the 42 IMO held at Washington DC (USA) in 2001.
منابع مشابه
Hermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کامل(m1,m2)-Convexity and Some New Hermite-Hadamard Type Inequalities
In this manuscript, a new class of extended (m1,m2)-convex and concave functions is introduced. After some properties of (m1,m2)-convex functions have been given, the inequalities obtained with Hölder and Hölder-İşcan and power-mean and improwed power-mean integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than...
متن کاملE. Lieb convexity inequalities and noncommutaive Bernstein inequality in Jordan-algebraic setting
We describe a Jordan-algebraic version of E. Lieb convexity inequalities. A joint convexity of Jordan-algebraic version of quantum entropy is proven. A version of noncommutative Bernstein inequality is proven as an application of one of convexity inequalities. A spectral theory on semi-simple complex algebras is used as a tool to prove the convexity results. Possible applications to optimizatio...
متن کاملSchur convexity of the generalized geometric Bonferroni mean and the relevant inequalities
In this paper, we discuss the Schur convexity, Schur geometric convexity and Schur harmonic convexity of the generalized geometric Bonferroni mean. Some inequalities related to the generalized geometric Bonferroni mean are established to illustrate the applications of the obtained results.
متن کاملThe Sharpening of Some Inequalities via Abstract Convexity
One of the application areas of abstract convexity is inequality theory. In this work, the authors seek to derive new inequalities by sharpening well-known inequalities by the use of abstract convexity. Cauchy-Schwarz inequality, Minkowski inequality and well-known mean inequalities are studied in this sense, concrete results are obtained for some of them. Mathematics subject classification (20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002