Targeting Dynamic Pockets of HIV-1 Protease by Structure-Based Computational Screening for Allosteric Inhibitors

نویسندگان

  • Jens Kunze
  • Nickolay Todoroff
  • Petra Schneider
  • Tiago Rodrigues
  • Tim Geppert
  • Felix Reisen
  • Herman Schreuder
  • Joachim Saas
  • Gerhard Hessler
  • Karl-Heinz Baringhaus
  • Gisbert Schneider
چکیده

We present the discovery of low molecular weight inhibitors of human immunodeficiency virus 1 (HIV-1) protease subtype B that were identified by structure-based virtual screening as ligands of an allosteric surface cavity. For pocket identification and prioritization, we performed a molecular dynamics simulation and observed several flexible, partially transient surface cavities. For one of these presumable ligand-binding pockets that are located in the so-called "hinge region" of the identical protease chains, we computed a receptor-derived pharmacophore model, with which we retrieved fragment-like inhibitors from a screening compound pool. The most potent hit inhibited protease activity in vitro in a noncompetitive mode of action. Although attempts failed to crystallize this ligand bound to the enzyme, the study provides proof-of-concept for identifying innovative tool compounds for chemical biology by addressing flexible protein models with receptor pocket-derived pharmacophore screening.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting flexibility: a structure-based computational study revealing allosteric HIV-1 protease inhibitors

We present the discovery of innovative low molecular weight inhibitors against human immunodeficiency virus 1 (HIV-1) protease. Structure-based virtual screening focused on potential allosteric surface cavities revealed these compounds [1]. To identify and prioritize such cavities we performed a molecular dynamics simulation were we concentrated on flexible and transient potential binding sites...

متن کامل

Screening Efficacy of Available HIV Protease Inhibitors on COVID-19 Protease

Background and Aim: Advent of COVID-19 attracted the attentions of researchers to develop drugs for its treatment. Besides efforts on developing new drugs, screening available drugs for efficacy on COVID-19 could be an urgent action of initiating its pharmacotherapy. In this study, efficacy of HIV protease inhibitors on COVID-19 protease has been examined. Methods: Molecular docking based scree...

متن کامل

Targeting structural flexibility in HIV-1 protease inhibitor binding.

HIV-1 protease remains an important anti-AIDS drug target. Although it has been known that ligand binding induces large conformational changes in the protease, the dynamic aspects of binding have been largely ignored. Several computational models describing protease dynamics have been reported recently. These have reproduced experimental observations, and have also explained how ligands gain ac...

متن کامل

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

A QSAR Study of HIV Protease Inhibitors Using Computational Descriptors to Prediction of pki of Cycle Derivatives of Urea

Preventing and reducing the spread of HIV (HIV) has always been a concern in medical science. One of the most common ways to control the virus is using enzyme-blocking drugs. In this study, we attempted to predict the biological activity (PKi) of organic urea derivatives in protease inhibitor compounds using molecular modeling using QSAR (Quantitative Structure Activity Relation), which is the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 54 3  شماره 

صفحات  -

تاریخ انتشار 2014