Regular Variation and Smile Asymptotics
نویسندگان
چکیده
We consider risk-neutral returns and show how their tail asymptotics translate directly to asymptotics of the implied volatility smile, thereby sharpening Roger Lee’s celebrated moment formula. The theory of regular variation provides the ideal mathematical framework to formulate and prove such results. The practical value of our formulae comes from the vast literature on tail asymptotics and our conditions are often seen to be true by simple inspection of known results.
منابع مشابه
The Small-maturity Heston Forward Smile Antoine Jacquier and Patrick Roome
In this paper we investigate the asymptotics of forward-start options and the forward implied volatility smile in the Heston model as the maturity approaches zero. We prove that the forward smile for out-ofthe-money options explodes and compute a closed-form high-order expansion detailing the rate of the explosion. Furthermore the result shows that the square-root behaviour of the variance proc...
متن کاملSmile Asymptotics II: Models with Known Moment Generating Function
In a recent article the authors obtained a formula which relates explicitly the tail of risk neutral returns with the wing behavior of the Black Scholes implied volatility smile. In situations where precise tail asymptotics are unknown but a moment generating function is available we first establish, under easy-to-check conditions, tail asymptoics on logarithmic scale as soft applications of st...
متن کاملAsymptotics of Forward Implied Volatility
We study asymptotics of forward-start option prices and the forward implied volatility smile using the theory of sharp large deviations (and refinements). In Chapter 1 we give some intuition and insight into forward volatility and provide motivation for the study of forward smile asymptotics. We numerically analyse no-arbitrage bounds for the forward smile given calibration to the marginal dist...
متن کاملImplied and Local Volatilities under Stochastic Volatility
For asset prices that follow stochastic-volatility diffusions, we use asymptotic methods to investigate the behavior of the local volatilities and Black–Scholes volatilities implied by option prices, and to relate this behavior to the parameters of the stochastic volatility process. We also give applications, including risk-premium-based explanations of the biases in some näıve pricing and hedg...
متن کاملThe Small-Maturity Heston Forward Smile
In this paper we investigate the asymptotics of forward-start options and the forward implied volatility smile in the Heston model as the maturity approaches zero. We prove that the forward smile for out-ofthe-money options explodes and compute a closed-form high-order expansion detailing the rate of the explosion. Furthermore the result shows that the square-root behaviour of the variance proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008