Comparative Assessment of Content-Based Face Image Retrieval in Different Color Spaces
نویسندگان
چکیده
Content-based face image retrieval is concerned with computer retrieval of face images (of a given subject) based on the geometric or statistical features automatically derived from these images. It is well known that color spaces provide powerful information for image indexing and retrieval by means of color invariants, color histogram, color texture, etc.. This paper assesses comparatively the performance of content-based face image retrieval in different color spaces using a standard algorithm, the Principal Component Analysis (PCA), which has become a popular algorithm in the face recognition community. In particular, we comparatively assess 12 color spaces (RGB, HSV , Y UV , Y CbCr, XY Z, Y IQ, L∗a∗b∗, U∗V ∗W ∗, L∗u∗v∗, I1I2I3, HSI, and rgb) by evaluating 7 color configurations for every single color space. A color configuration is defined by an individual or a combination of color component images. Take the RGB color space as an example, possible color configurations are R, G, B, RG, RB, GB, and RGB. Experimental results using 600 FERET color images corresponding to 200 subjects and 456 FRGC (Face Recognition Grand Challenge) color images of 152 subjects show that some color configurations, such as Y V in the Y UV color space and Y I in the Y IQ color space, help improve face retrieval performance.
منابع مشابه
Image retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملColor Content-based Image Classification
In content-based image retrieval systems the most efficient and simple searches are the color-based searches, which can be realized in several color spaces and by several color descriptors. In this paper the possibility of image classification using certain color descriptors is examined, and the usage of different color spaces and descriptors depending on the image database domain is presented.
متن کاملA Study of the Effect of Color Quantization Schemes for Different Color Spaces on Content-based Image Retrieval
Color spaces, color histograms, histogram distance measurements, size and quantization play an important role in retrieving images based on similarities. This paper presents a study of the effect of color quantization schemes for different color spaces (HSV, YIQ and YCbCr) on the performance of content-based image retrieval (CBIR), using different histogram distance measurements (Histogram Eucl...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005