Probabilistic Preference Logic Networks

نویسندگان

  • Thomas Lukasiewicz
  • Maria Vanina Martinez
  • Gerardo I. Simari
چکیده

Reasoning about an entity’s preferences (be it a user of an application, an individual targeted for marketing, or a group of people whose choices are of interest) has a long history in different areas of study. In this paper, we adopt the point of view that grows out of the intersection of databases and knowledge representation, where preferences are usually represented as strict partial orders over the set of tuples in a database or the consequences of a knowledge base. We introduce probabilistic preference logic networks (PPLNs), which flexibly combine such preferences with probabilistic uncertainty. Their applications are clear in domains such as the Social Semantic Web, where users often express preferences in an incomplete manner and through different means, many times in contradiction with each other. We show that the basic problems associated with reasoning with PPLNs (computing the probability of a world or a given query) are #P-hard, and then explore ways to make these computations tractable by: (i) leveraging results from order theory to obtain a polynomial-time randomized approximation scheme (FPRAS) under fixed-parameter assumptions; and (ii) studying a fragment of the language of PPLNs for which exact computations can be performed in fixed-parameter polynomial time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models for Conditional Preferences as extensions of CP-nets

This paper presents two frameworks that generalize Conditional Preference networks (CP-nets). The first generalization is the LCP-theory, first order logic theory that provides a rich framework to express preferences. The the second generalization, the PCP-networks, is a probabilistic generalization of CP-nets that models conditional preferences with uncertainty.

متن کامل

From Probabilistic Horn Logic to Chain Logic

Probabilistic logics have attracted a great deal of attention during the past few years. Where logical languages have, already from the inception of the field of artificial intelligence, taken a central position in research on knowledge representation and automated reasoning, probabilistic graphical models with their associated probabilistic basis have taken up in recent years a similar positio...

متن کامل

Preferences, Links, and Probabilities for Ranking Objects in Ontologies

In previous work, we have introduced variable-strength conditional preferences for ranking objects in ontologies. In this paper, we continue this line of research. We propose a new ranking of objects, which integrates this userdefined preference ranking of objects with Google’s importance ranking (called PageRank) based on the link structure between the objects. We also propose to use probabili...

متن کامل

Probabilistic Conditional Preference Networks

This paper proposes a “probabilistic” extension of conditional preference networks as a way to compactly represent a probability distributions over preference orderings. It studies the probabilistic counterparts of the main reasoning tasks, namely dominance testing and optimisation from the algorithmical and complexity viewpoints. Efficient algorithms for tree-structured probabilistic CP-nets a...

متن کامل

A Design Methodology for Reliable MRF-Based Logic Gates

Probabilistic-based methods have been used for designing noise tolerant circuits recently. In these methods, however, there is not any reliability mechanism that is essential for nanometer digital VLSI circuits. In this paper, we propose a novel method for designing reliable probabilistic-based logic gates. The advantage of the proposed method in comparison with previous probabilistic-based met...

متن کامل

Lifted Optimization for Relational Preference Rules

The move to relational probabilistic models from propositional models stemmed from the realization that the type of knowledge we have and need in many domains is at a level more generic than that of concrete objects. In reasoning about preference, too, often we have knowledge about the desirable behavior or state of a system of agents/objects, that applies to different instantiations of this sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014