Modulo quantifiers over functional vocabularies extending addition
نویسندگان
چکیده
We show that first order logic (FO) and first order logic extended with modulo counting quantifiers (FOMOD) over purely functional vocabularies which extend addition, satisfy the Crane beach property (CBP) if the logic satisfies a normal form (called positional normal form). This not only shows why logics over the addition vocabulary have the CBP but also gives new CBP results, for example for the vocabulary which extends addition with the exponentiation function. The above results can also be viewed from the perspective of circuit complexity. Showing the existence of regular languages not definable in FOMOD[<,+,×] is equivalent to the separation of the circuit complexity classes ACC and NC. Our theorem shows that a weaker logic , namely, FOMOD[<,+, 2] cannot define all regular languages.
منابع مشابه
Expressive Completeness for LTL With Modulo Counting and Group Quantifiers
Kamp showed that linear temporal logic is expressively complete for first order logic over words. We give a Gabbay style proof to show that linear temporal logic extended with modulo counting and group quantifiers (introduced by Baziramwabo,McKenzie,Thérien) is expressively complete for first order logic with modulo counting (introduced by Straubing, Thérien, Thomas) and group quantifiers (intr...
متن کاملA Generalization of the {\L}o\'s-Tarski Preservation Theorem
Preservation theorems are amongst the earliest areas of study in classical model theory. One of the first preservation theorems to be proven is the Łoś-Tarski theorem that provides over arbitrary structures and for arbitrary finite vocabularies, semantic characterizations of the ∀ and ∃ prefix classes of first order logic (FO) sentences, via the properties of preservation under substructures an...
متن کاملOn Presburger Arithmetic Extended with Modulo Counting Quantifiers
We consider Presburger arithmetic (PA) extended with modulo counting quantifiers. We show that its complexity is essentially the same as that of PA, i.e., we give a doubly exponential space bound. This is done by giving and analysing a quantifier elimination procedure similar to Reddy and Loveland’s procedure for PA. We also show that the complexity of the automata-based decision procedure for ...
متن کاملCommutative Locative Quantifiers for Multiplicative Linear Logic
The paper presents a solution to the technical problem posed by Girard after the introduction of Ludics of how to define proof nets with quantifiers that commute with multiplicatives. According to the principles of Ludics, the commuting quantifiers have a “locative” nature, in particular, quantified formulas are not defined modulo variable renaming. The solution is given by defining a new corre...
متن کاملA Survey of Satisfiability Modulo Theory
Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative “natural domain” approaches. We also cover quantifiers, Craig interpolants, polynomial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1705.00290 شماره
صفحات -
تاریخ انتشار 2017