The dynamics of the hydroxymethylome and methylome during the progression of Alzheimer's disease
نویسندگان
چکیده
Alzheimer’s disease (AD) is a neurodegenerative condition affecting millions of individuals worldwide and is a major source of mortality in elderly populations. While it is well established that there is a strong genetic basis for the disease, the epigenetic mechanism underlying the disease is largely unknown. The main purpose of this thesis is to understand the alteration of epigenetic modifications associated with the disease and its progression. In particular, we examine how alterations in the cytosine methylation and cytosine hydroxymethylation, two epigenetic modifications that are critically important for the development and function of the brain, are associated with advancing stages of Alzheimer’s disease. Eight progressive AD brain samples were examined for changes in DNA methylation and hydroxymethylation by both dot blot analysis and a new oxidative bisulfite (OXBS) deep sequencing technology. The initial results of dot blot analysis reveal a statistically significant decrease in 5hmC associated with intermediate stage AD among the samples. This data suggests that the alterations in epigenetic modifications is likely associated with the pathophysiology of Alzheimer’s disease, not only shedding new light on our understanding of the epigenetics of the disease, but also providing the
منابع مشابه
Role of microRNA as a biomarker in Alzheimer’s disease
Introduction: MicroRNAs are small, non-coding, and protected RNA molecules that regulate gene expression after transcription by mRNA degradation or inhibition of protein synthesis. The function of these molecules is critical to many cellular processes, including growth, development, differentiation, homeostasis, apoptosis, aging, stress resistance. In addition, some diseases including cancer, a...
متن کاملAnalysis of the incidence and mortality rate of Alzheimer's and other dementias during the last 30 years in Iran
Introduction: Assessing the course of Alzheimer's disease and other dementias is very important due to lack of a definitive treatment, increase in life expectancy, and aging population. This study aimed to investigate the long-term trend in the incidence and mortality rate of Alzheimer's and other dementias in Iran during 1990-2019. Materials and Methods: Age-Standardized Incidence Rate (ASIR) ...
متن کاملStructural basis for the substrate selectivity of PvuRts1I, a 5-hydroxymethylcytosine DNA restriction endonuclease
5-Hydroxymethylation is a curious modification of cytosine that was discovered some decades ago, but its functional role in eukaryotes still awaits elucidation. 5-Hydroxymethylcytosine is an epigenetic marker that is crucial for multiple biological processes. The profile is altered under certain disease conditions such as cancer, Huntington's disease and Alzheimer's disease. Using the DNA-modif...
متن کاملO-5: Reprogramming of Paternal DNA Methylome during Spermiogenesis
Background Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs in the zygote. This process involves reorganisation of the patterns of 5-methylcytosine (5mC), a DNA modification associated with regulation of gene activity. Notably, both maternal and paternal genomes undergo Tet3-dependent oxidati...
متن کاملAlteration in the Expression of Alzheimer's-Related Genes in Rat Hippocampus by Exercise and Morphine Treatments
Introduction: Alzheimer's disease is a progressive brain disorder, which slowly eliminates memory and intellectual ability and eventually destroys the ability to carry out the simple tasks. β amyloid plaque and neurofibrillary tangles are two important signatures of this disease, which caused by mutant in Tau, BACE1, and APP genes. They could be important targets for treatment of Alzheimer's di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014