Search for a predicted hydrogen bonding motif--a multidisciplinary investigation into the polymorphism of 3-azabicyclo[3.3.1]nonane-2,4-dione.
نویسندگان
چکیده
The predictions of the crystal structure of 3-azabicyclo[3.3.1]nonane-2,4-dione submitted in the 2001 international blind test of crystal structure prediction (CSP2001) led to the conclusion that crystal structures containing an alternative hydrogen bonded dimer motif were energetically competitive with the known catemer-based structure. Here we report an extensive search for a dimer-based crystal structure. Using an automated polymorph screen a new catemer-based metastable polymorph (form 2) and two new catemer-based solvates were found, and concurrent thermal studies reproduced form 2 and identified a plastic phase (form 3), whose powder X-ray diffraction pattern was consistent with the cubic space group I23 (a = 7.5856(1) A). Computational studies on the monomer showed that the imide N-H was a weak hydrogen bond donor, rationalizing the occurrence of the plastic phase which involved the breaking of all hydrogen bonds, and modeling of small clusters showed that dimers could easily reorganize to give the catemer. FTIR spectra confirmed the weakness of the hydrogen bond, with the solute showing no self-assembly in solution. It is concluded that the weakness of the N-H donor, coupled with the globular shape of the molecule, allows unusually facile transformation between alternative hydrogen bonding motifs during aggregation and nucleation.
منابع مشابه
Unprecedented photochemical induced cascading rearrangement of the 3-azabicyclo[3.3.1]nonane skeleton.
Certain 3-azabicyclo[3.3.1]nonane derivatives undergo unprecedented stereospecific skeletal cleavage when subjected to light affording a novel heterotricyclic skeleton.
متن کاملThe 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents.
3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system...
متن کاملCrystal structure of 2-(2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)acetonitrile
In the title 3-aza-bicyclo-nonane derivative, C22H22N2, both the fused piperidine and cyclo-hexane rings adopt a chair conformation. The phenyl rings attached to the central aza-bicylononane fragment in an equatorial orientation are inclined to each other at 23.7 (1)°. The amino group is not involved in any hydrogen bonding, so the crystal packing is stabilized only by van der Waals forces.
متن کاملHydrogen bond induced enantioselectivity in Mn(salen)-catalysed sulfoxidaton reactions.
A chiral Mn(salen) complex exhibiting two lactam binding sites at two rigid 1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one skeletons is capable of enantioselective sulfoxidation due to spatially remote substrate hydrogen bonding.
متن کاملCrystal structures and supramolecular features of 9,9-dimethyl-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone, 3,7-diazaspiro[bicyclo[3.3.1]nonane-9,1′-cyclopentane]-2,4,6,8-tetraone and 9-methyl-9-phenyl-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone dimethylformamide monosolvate
Compounds (I), C9H10N2O4, (II), C11H12N2O4, and (III), C14H12N2O4·C3H7NO represent 9,9-disubstituted-3,7-di-aza-bicyclo-[3.3.1]nonane-2,4,6,8-tetra-one deriv-atives with very similar mol-ecular geometries for the bicyclic framework: the dihedral angle between the planes of the imide groups is 74.87 (6), 73.86 (3) and 74.83 (6)° in (I)-(III), respectively. The dimethyl derivative (I) is position...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 129 12 شماره
صفحات -
تاریخ انتشار 2007