Genome-wide case-control study in GAW17 using coalesced rare variants
نویسندگان
چکیده
Genome-wide association studies have successfully identified numerous loci at which common variants influence disease risks or quantitative traits of interest. Despite these successes, the variants identified by these studies have generally explained only a small fraction of the variations in the phenotype. One explanation may be that many rare variants that are not included in the common genotyping platforms may contribute substantially to the genetic variations of the diseases. Next-generation sequencing, which would better allow for the analysis of rare variants, is now becoming available and affordable; however, the presence of a large number of rare variants challenges the statistical endeavor to stably identify these disease-causing genetic variants. We conduct a genome-wide association study of Genetic Analysis Workshop 17 case-control data produced by the next-generation sequencing technique and propose that collapsing rare variants within each genetic region through a supervised dimension reduction algorithm leads to several macrovariants constructed for rare variants within each genetic region. A simultaneous association of the phenotype to all common variants and macrovariants is undertaken using a linear discriminant analysis using the penalized orthogonal-components regression algorithm. The results suggest that the proposed analysis strategy shows promise but needs further development.
منابع مشابه
Genome-wide association analysis of GAW17 data using an empirical Bayes variable selection
Next-generation sequencing technologies enable us to explore rare functional variants. However, most current statistical techniques are too underpowered to capture signals of rare variants in genome-wide association studies. We propose a supervised coalescing of single-nucleotide polymorphisms to obtain gene-based markers that can stably reveal possible genetic effects related to rare alleles. ...
متن کاملAssociation tests for rare and common variants based on genotypic and phenotypic measures of similarity between individuals
Genome-wide association studies have helped us identify thousands of common variants associated with several widespread complex diseases. However, for most traits, these variants account for only a small fraction of phenotypic variance or heritability. Next-generation sequencing technologies are being used to identify additional rare variants hypothesized to have higher effect sizes than the al...
متن کاملComparison of collapsing methods for the statistical analysis of rare variants
Novel technologies allow sequencing of whole genomes and are considered as an emerging approach for the identification of rare disease-associated variants. Recent studies have shown that multiple rare variants can explain a particular proportion of the genetic basis for disease. Following this assumption, we compare five collapsing approaches to test for groupwise association with disease statu...
متن کاملEvaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data
We evaluate four association tests for rare variants-the combined multivariate and collapsing (CMC) method, two weighted-sum methods, and a variable threshold method-by applying them to the simulated data sets of unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise error rate (FWER) and average power are used as criteria for evaluation. Our results show that w...
متن کاملGene-based multiple trait analysis for exome sequencing data
The common genetic variants identified through genome-wide association studies explain only a small proportion of the genetic risk for complex diseases. The advancement of next-generation sequencing technologies has enabled the detection of rare variants that are expected to contribute significantly to the missing heritability. Some genetic association studies provide multiple correlated traits...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011