Effect of acylation on the interaction of the N-Terminal segment of pulmonary surfactant protein SP-C with phospholipid membranes.
نویسندگان
چکیده
SP-C, the smallest pulmonary surfactant protein, is required for the formation and stability of surface-active films at the air-liquid interface in the lung. The protein consists of a hydrophobic transmembrane alpha-helix and a cationic N-terminal segment containing palmitoylated cysteines. Recent evidence suggests that the N-terminal segment is of critical importance for SP-C function. In the present work, the role of palmitoylation in modulating the lipid-protein interactions of the N-terminal segment of SP-C has been studied by analyzing the effect of palmitoylated and non-palmitoylated synthetic peptides designed to mimic the N-terminal segment on the dynamic properties of phospholipid bilayers, recorded by spin-label electron spin resonance (ESR) spectroscopy. Both palmitoylated and non-palmitoylated peptides decrease the mobility of phosphatidylcholine (5-PCSL) and phosphatidylglycerol (5-PGSL) spin probes in dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) bilayers. In zwitterionic DPPC membranes, both peptides have a greater effect at temperatures below than above the main gel-to-liquid-crystalline phase transition, the palmitoylated peptide inducing greater immobilisation of the lipid than does the non-palmitoylated form. In anionic DPPG membranes, both palmitoylated and non-palmitoylated peptides have similar immobilizing effects, probably dominated by electrostatic interactions. Both palmitoylated and non-palmitoylated peptides have effects comparable to whole native SP-C, as regards improving the gel phase solubility of phospholipid spin probes and increasing the polarity of the bilayer surface monitored by pK shifts of fatty acid spin probes. This indicates that a significant part of the perturbing properties of SP-C in phospholipid bilayers is mediated by interactions of the N-terminal segment. The effect of SP-C N-terminal peptides on the chain flexibility gradient of DPPC and DPPG bilayers is consistent with the existence of a peptide-promoted interdigitated phase at temperatures below the main gel-to-liquid-crystalline phase transition. The palmitoylated peptide, but not the non-palmitoylated version, is able to stably segregate interdigitated and non-interdigitated populations of phospholipids in DPPC bilayers. This feature suggests that the palmitoylated N-terminal segment stabilizes ordered domains such as those containing interdigitated lipids. We propose that palmitoylation may be important to promote and facilitate association of SP-C and SP-C-containing membranes with ordered lipid structures such as those potentially existing in highly compressed states of the interfacial surfactant film.
منابع مشابه
The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers.
In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate spontaneously with bilayers composed of either zwitterionic (phosphatidylcholine) or anionic (phosphatidylglyc...
متن کاملSuperficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers.
A dansylated form of porcine surfactant-associated protein C (Dns-SP-C), bearing a single dansyl group at its N-terminal end, has been used to characterize the lipid-protein and protein-protein interactions of SP-C reconstituted in phospholipid bilayers, using fluorescence spectroscopy. The fluorescence emission spectrum of Dns-SP-C in phospholipid bilayers is similar to the spectrum of dansyl-...
متن کاملEffect of acylation on structure and function of surfactant protein C at the air-liquid interface.
Pulmonary surfactant protein C (SP-C) is a small hydrophobic peptide that is palmitoylated on 2 adjacent cysteine residues. SP-C enhances the adsorption of phospholipids into a monolayer. The function of the acylation is not clear yet. The experiments described in this article were carried out in order to investigate the function of SP-C acylation in (protein-catalyzed) lipid monolayer formatio...
متن کاملRole of surfactant protein A (SP-A)/lipid interactions for SP-A functions in the lung.
Surfactant protein A (SP-A), an oligomeric glycoprotein, is a member of a group of proteins named collectins that contain collagen-like and Ca(2+)-dependent carbohydrate recognition domains. SP-A interacts with a broad range of amphipathic lipids (glycerophospholipids, sphingophospholipids, glycosphingolipids, lipid A, and lipoglycans) that are present in surfactant or microbial membranes. This...
متن کاملInteractions of pulmonary surfactant protein SP-A with monolayers of dipalmitoylphosphatidylcholine and cholesterol: roles of SP-A domains.
Pulmonary surfactant protein A (SP-A) is an oligomeric glycoprotein that binds dipalmitoylphosphatidylcholine (DPPC). Interactions of rat SP-A and recombinant SP-As with pure and binary monolayers of DPPC and cholesterol were studied using a rhomboid surface balance at 37 degrees C. A marked inflection at equilibrium surface tension (23 mN/m) in surface tension-area isotherm of a pure DPPC film...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1778 5 شماره
صفحات -
تاریخ انتشار 2008