Finite Element Analysis of Drug Electrostatic Diffusion: Inhibition Rate Studies in N1 Neuraminidase
نویسندگان
چکیده
This article describes a numerical solution of the steady-state Poisson-Boltzmann-Smoluchowski (PBS) and Poisson-Nernst-Planck (PNP) equations to study diffusion in biomolecular systems. Specifically, finite element methods have been developed to calculate electrostatic interactions and ligand binding rate constants for large biomolecules. The resulting software has been validated and applied to the wild-type and several mutated avian influenza neurominidase crystal structures. The calculated rates show very good agreement with recent experimental studies. Furthermore, these finite element methods require significantly fewer computational resources than existing particle-based Brownian dynamics methods and are robust for complicated geometries. The key finding of biological importance is that the electrostatic steering plays the important role in the drug binding process of the neurominidase.
منابع مشابه
Molecular Dynamics Simulations Suggest that Electrostatic Funnel Directs Binding of Tamiflu to Influenza N1 Neuraminidases
Oseltamivir (Tamiflu) is currently the frontline antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase, a flu protein responsible for the release of newly synthesized virions. However, oseltamivir resistance has become a critical problem due to rapid mutation of the flu virus. Unfortunately, how mutations actually confer drug resistance is not well u...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملIndependent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir
Free-energy changes are essential physicochemical quantities for understanding most biochemical processes. Yet, the application of accurate thermodynamic-integration (TI) computation to biological and macromolecular systems is limited by finite-sampling artifacts. In this paper, we employ independent-trajectories thermodynamic-integration (IT-TI) computation to estimate improved free-energy cha...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملOn the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2009