Hyperventilation before resistance exercise: cerebral hemodynamics and orthostasis.

نویسندگان

  • Steven A Romero
  • William H Cooke
چکیده

UNLABELLED Hyperventilation performed by athletes during preparation for resistance exercise might contribute to reports of postexercise orthostatic instability. PURPOSE To test the hypothesis that post-resistance exercise orthostatic instability is associated with exaggerated reductions of cerebral blood-flow velocity after hyperventilation. METHODS We recorded the ECG, end-tidal CO2, beat-by-beat finger arterial pressure, and cerebral blood-flow velocity in 10 healthy subjects. Subjects performed 10 repetitions of recumbent leg press using resistance equivalent to 80% of their six-repetition maximum during three separate trials (randomized): 1) no prior hyperventilation (NOHV); 2) after hyperventilation to an end-tidal CO2 of 3% (HV3%); and 3) after hyperventilation to an end-tidal CO2 of 2% (HV2%). After exercise, subjects stood upright for 10 s and rated symptoms of lightheadedness on a scale of 1 (none) to 5 (faint). RESULTS Mean cerebral blood-flow velocity (CBFV(MEAN)) increased by 12% during exercise after NOHV and decreased by 14 and 25% during exercise after HV3% and HV2% (all P < 0.0001). During standing, mean arterial pressure (MAP) decreased by 96 mm Hg and CBFV(MEAN) decreased by 41 cm.s(-1) (pooled across conditions; all P < 0.0001). Absolute reductions of CBFV(MEAN) during standing were greater after HV2% compared with both NOHV and HV3% (P = 0.003). Ratings of perceived lightheadedness during standing increased with prior hyperventilation (P = 0.02) and correlated to the magnitude of reductions in MAP (r = 0.51; P = 0.003) and CBFV(MEAN) (r = 0.37; P = 0.04). CONCLUSIONS Hyperventilation before lower-body resistance exercise exacerbates CBFV(MEAN) reductions during standing. Increased symptoms of orthostatic instability are associated with the magnitude of reductions in both MAP and CBFV(MEAN).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebral versus systemic hemodynamics during graded orthostatic stress in humans.

BACKGROUND Orthostatic syncope is usually attributed to cerebral hypoperfusion secondary to systemic hemodynamic collapse. Recent research in patients with neurocardiogenic syncope has suggested that cerebral vasoconstriction may occur during orthostatic hypotension, compromising cerebral autoregulation and possibly contributing to the loss of consciousness. However, the regulation of cerebral ...

متن کامل

Alterations in autonomic function and cerebral hemodynamics to orthostatic challenge following a mountain marathon.

We examined potential mechanisms (autonomic function, hypotension, and cerebral hypoperfusion) responsible for orthostatic intolerance following prolonged exercise. Autonomic function and cerebral hemodynamics were monitored in seven athletes pre-, post- (<4 h), and 48 h following a mountain marathon [42.2 km; cumulative gain approximately 1,000 m; approximately 15 degrees C; completion time, 2...

متن کامل

Reduced cerebral blood flow with orthostasis precedes hypocapnic hyperpnea, sympathetic activation, and postural tachycardia syndrome.

Hyperventilation and reduced cerebral blood flow velocity can occur in postural tachycardia syndrome (POTS). We studied orthostatically intolerant patients, with suspected POTS, with a chief complaint of upright dyspnea. On the basis of our observations of an immediate reduction of cerebral blood flow velocity with orthostasis, we hypothesize that the resulting ischemic hypoxia of the carotid b...

متن کامل

Hypocapnia and cerebral hypoperfusion in orthostatic intolerance.

BACKGROUND AND PURPOSE Orthostatic and other stresses trigger tachycardia associated with symptoms of tremulousness, shortness of breath, dizziness, blurred vision, and, often, syncope. It has been suggested that paradoxical cerebral vasoconstriction during head-up tilt might be present in patients with orthostatic intolerance. We chose to study middle cerebral artery (MCA) blood flow velocity ...

متن کامل

Cerebral critical closing pressure and CO2 responses during the progression toward syncope.

Syncope from sustained orthostasis results from cerebral hypoperfusion associated with reductions in arterial pressure at the level of the brain (BPMCA) and reductions in arterial CO2 as reflected by end-tidal values (PetCO2). It was hypothesized that reductions in PetCO2 increase cerebrovascular tone before a drop in BPMCA that ultimately leads to syncope. Twelve men (21-42 yr of age) complete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medicine and science in sports and exercise

دوره 39 8  شماره 

صفحات  -

تاریخ انتشار 2007