A Linear Time Active Learning Algorithm for Link Classification
نویسندگان
چکیده
We present very efficient active learning algorithms for link classification in signed networks. Our algorithms are motivated by a stochastic model in which edge labels are obtained through perturbations of a initial sign assignment consistent with a two-clustering of the nodes. We provide a theoretical analysis within this model, showing that we can achieve an optimal (to whithin a constant factor) number of mistakes on any graph G = (V,E) such that |E| = Ω(|V |) by querying O(|V |) edge labels. More generally, we show an algorithm that achieves optimality to within a factor of O(k) by querying at most order of |V | + (|V |/k) edge labels. The running time of this algorithm is at most of order |E|+ |V | log |V |.
منابع مشابه
A Linear Time Active Learning Algorithm
We present very efficient active learning algorithms for link classification in signed networks. Our algorithms are motivated by a stochastic model in which edge labels are obtained through perturbations of a initial sign assignment consistent with a two-clustering of the nodes. We provide a theoretical analysis within this model, showing that we can achieve an optimal (to whithin a constant fa...
متن کاملA Linear Time Active Learning Algorithm for Link Classification -- Full Version --
We present very efficient active learning algorithms for link classification in signed networks. Our algorithms are motivated by a stochastic model in which edge labels are obtained through perturbations of a initial sign assignment consistent with a two-clustering of the nodes. We provide a theoretical analysis within this model, showing that we can achieve an optimal (to whithin a constant fa...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملAdaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012