Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury

نویسندگان

  • Young S Gwak
  • Claire E Hulsebosch
  • Joong Woo Leem
چکیده

The hyperactive state of sensory neurons in the spinal cord enhances pain transmission. Spinal glial cells have also been implicated in enhanced excitability of spinal dorsal horn neurons, resulting in pain amplification and distortions. Traumatic injuries of the neural system such as spinal cord injury (SCI) induce neuronal hyperactivity and glial activation, causing maladaptive synaptic plasticity in the spinal cord. Recent studies demonstrate that SCI causes persistent glial activation with concomitant neuronal hyperactivity, thus providing the substrate for central neuropathic pain. Hyperactive sensory neurons and activated glial cells increase intracellular and extracellular glutamate, neuropeptides, adenosine triphosphates, proinflammatory cytokines, and reactive oxygen species concentrations, all of which enhance pain transmission. In addition, hyperactive sensory neurons and glial cells overexpress receptors and ion channels that maintain this enhanced pain transmission. Therefore, post-SCI neuronal-glial interactions create maladaptive synaptic circuits and activate intracellular signaling events that permanently contribute to enhanced neuropathic pain. In this review, we describe how hyperactivity of sensory neurons contributes to the maintenance of chronic neuropathic pain via neuronal-glial interactions following SCI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent At-Level Thermal Hyperalgesia and Tactile Allodynia Accompany Chronic Neuronal and Astrocyte Activation in Superficial Dorsal Horn following Mouse Cervical Contusion Spinal Cord Injury

In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transm...

متن کامل

Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain

Background: Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppress...

متن کامل

نقش سلول‌های گلیا در ایجاد دردهای نوروپاتی و بروز پدیده تحمل / پردردی اپیوئیدها

Common cellular and molecular mechanisms are not only involved in the development of neuropathic pain caused by neurological damage but also in the occurrence of the tolerance/hyperalgesia phenomenon caused by chronic use of opioids. It seems that the activation of the neuroimmune system in the brain and spinal cord is one of the most important mechanisms involved in the initiation and mainte...

متن کامل

Resident glial cell activation in response to perispinal inflammation leads to acute changes in nociceptive sensitivity: implications for the generation of neuropathic pain.

Injury or disease affecting the spinal cord is often accompanied by abnormal, chronic pain. Recent estimates suggest that approximately 60% of patients with multiple sclerosis are affected by significant changes in pain sensitivity or experience ongoing neuropathic pain of unknown etiology. Chronic pain is also a significant concern after direct spinal cord trauma. Inflammatory events and the c...

متن کامل

Beyond reproduction: the role of progesterone in neuropathic pain after spinal cord injury

Neuropathic pain, a type of pain arising after direct damage or disease of the nervous system, is often intractable and challenges the search of effective therapeutic strategies. In particular, neuropathic pain is a very frequent sequel of spinal cord injury (SCI) and a decisive contributor to decreased quality of life. Several and intricate mechanisms appear to be involved in the onset and mai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017