Information for “ The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends ”

نویسندگان

  • Jonne H. Helenius
  • Gary J. Brouhard
  • Yannis Kalaidzidis
  • Stefan Diez
  • Jonathon Howard
چکیده

Movies of MCAK-GFP diffusion were analyzed using ”Motion Tracking,” an in-house software package written in the Pluk software development environment (ref. 18). The program starts by identifying peaks in the pixel intensity values for a single frame of the movie. Intensity peaks are assigned (x, y) position values by fitting the experimental intensity distribution with a squared Lorentzian function. In this way, each frame is described by a sum of squared Lorentzian functions:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aurora B Inhibits MCAK Activity through a Phosphoconformational Switch that Reduces Microtubule Association

BACKGROUND Proper spindle assembly and chromosome segregation rely on precise microtubule dynamics, which are governed in part by the kinesin-13 MCAK. MCAK microtubule depolymerization activity is inhibited by Aurora B-dependent phosphorylation, but the mechanism of this inhibition is not understood. RESULTS Here, we develop the first Förster resonance energy transfer (FRET)-based biosensor f...

متن کامل

The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends.

MCAK belongs to the Kin I subfamily of kinesin-related proteins, a unique group of motor proteins that are not motile but instead destabilize microtubules. We show that MCAK is an ATPase that catalytically depolymerizes microtubules by accelerating, 100-fold, the rate of dissociation of tubulin from microtubule ends. MCAK has one high-affinity binding site per protofilament end, which, when occ...

متن کامل

The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization

Unlike other kinesins, members of the kinesin-13 subfamily do not move directionally along microtubules but, instead, depolymerize them. To understand how kinesins with structurally similar motor domains can have such dissimilar functions, we elucidated the ATP turnover cycle of the kinesin-13, MCAK. In contrast to translocating kinesins, ATP cleavage, rather than product release, is the rate-l...

متن کامل

MCAK associates with the tips of polymerizing microtubules

MCAK is a member of the kinesin-13 family of microtubule (MT)-depolymerizing kinesins. We show that the potent MT depolymerizer MCAK tracks (treadmills) with the tips of polymerizing MTs in living cells. Tip tracking of MCAK is inhibited by phosphorylation and is dependent on the extreme COOH-terminal tail of MCAK. Tip tracking is not essential for MCAK's MT-depolymerizing activity. We propose ...

متن کامل

The family-specific a4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition

Kinesins that influence the dynamics of microtubule growth and shrinkage require the ability to distinguish between the microtubule end and the microtubule lattice. The microtubule depolymerizing kinesin MCAK has been shown to specifically recognize the microtubule end. This ability is key to the action of MCAK in regulating microtubule dynamics. We show that the a4-helix of the motor domain is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006