Ecto-5'-nucleotidase (CD73) attenuates allograft airway rejection through adenosine 2A receptor stimulation.
نویسندگان
چکیده
There are multiple drivers of leukocyte recruitment in lung allografts that contribute to lymphocytic bronchitis (LB) and bronchiolitis obliterans (BO). The innate mechanisms driving (or inhibiting) leukocyte trafficking to allografts remain incompletely understood. This study tested the hypothesis that CD73 (ecto-5'nucleotidase), an enzyme that catalyzes the conversion of AMP to adenosine, is a critical negative regulator of LB and BO. Implantation of tracheal allografts from wild type (WT) mice into CD73(-/-) recipients revealed a striking increase in airway luminal obliteration at 7 d (62 +/- 4% and 47 +/- 5% for CD73(-/-) and WT allograft recipients, respectively; p = 0.046). There was also a concordant increase in CD3(+) lymphocytic infiltration (523 +/- 41 cells and 313 +/- 43 cells for CD73(-/-) and WT allograft recipients, respectively; p = 0.013). Because real-time PCR revealed a 43-fold upregulation of mRNA for the adenosine A2A receptor (A2AR) in WT allografts compared with WT isografts (p = 0.032), additional experiments were performed to determine whether the protective effect of CD73 was due to generation of adenosine and its stimulation of the A2AR. Treatment of WT recipients with an A2AR agonist significantly reduced CD3(+) lymphocyte infiltration and airway luminal obliteration; similar treatment of CD73(-/-) recipients rescued them from LB and airway obliteration. These data implicate CD73 acting through adenosine generation and its stimulation of the A2AR as a critical negative modulator of lymphocyte recruitment into airway allografts. The CD73/adenosine axis might be a new therapeutic target to prevent BO.
منابع مشابه
Ecto-5' nucleotidase (CD73)-mediated adenosine generation and signaling in murine cardiac allograft vasculopathy.
Ecto-5'-nucleotidase (CD73) catalyzes the terminal phosphohydrolysis of 5'-adenosine monophosphate and is widely expressed on endothelial cells where it regulates barrier function. Because it is also expressed on lymphocytes, we hypothesized that it modulates vascular immune regulation under homeostatic conditions and dysregulation under stress conditions such as cardiac allotransplantation. In...
متن کاملEthanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus
Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test...
متن کاملEndogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.
Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammat...
متن کاملDeficits in Endogenous Adenosine Formation by Ecto-5′-Nucleotidase/CD73 Impair Neuromuscular Transmission and Immune Competence in Experimental Autoimmune Myasthenia Gravis
AMP dephosphorylation via ecto-5'-nucleotidase/CD73 is the rate limiting step to generate extracellular adenosine (ADO) from released adenine nucleotides. ADO, via A2A receptors (A2ARs), is a potent modulator of neuromuscular and immunological responses. The pivotal role of ecto-5'-nucleotidase/CD73, in controlling extracellular ADO formation, prompted us to investigate its role in a rat model ...
متن کاملDeficiency of CD73/ecto-5'-nucleotidase in mice enhances acute graft-versus-host disease.
Extracellular ATP and adenosine have immunoregulatory roles during inflammation. Elevated extracellular ATP is known to exacerbate GVHD, and the pharmacologic activation of the adenosine A2A receptor is protective. However, the role of endogenous adenosine is unknown. We used gene-targeted mice and a pharmacologic inhibitor to test the role of adenosine generated by CD73/ecto-5'-nucleotidase in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 185 2 شماره
صفحات -
تاریخ انتشار 2010