Packing Odd Circuits in Eulerian Graphs

نویسندگان

  • James F. Geelen
  • Bertrand Guenin
چکیده

Let C be the clutter of odd circuits of a signed graph ðG;SÞ: For nonnegative integral edge-weights w; we are interested in the linear program minðwtx: xðCÞ51; for C 2 C; and x50Þ; which we denote by (P). The problem of solving the related integer program clearly contains the maximum cut problem, which is NP-hard. Guenin proved that (P) has an optimal solution that is integral so long as ðG;SÞ does not contain a minor isomorphic to odd-K5: We generalize this by showing that if ðG;SÞ does not contain a minor isomorphic to odd-K5 then (P) has an integral optimal solution and its dual has a half-integral optimal solution. # 2002 Elsevier Science (USA)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cycling Property for the Clutter of Odd st-Walks

A binary clutter is cycling if its packing and covering linear program have integral optimal solutions for all Eulerian edge capacities. We prove that the clutter of odd stwalks of a signed graph is cycling if and only if it does not contain as a minor the clutter of odd circuits of K5 nor the clutter of lines of the Fano matroid. Corollaries of this result include, of many, the characterizatio...

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

Asymptotic enumeration of Eulerian circuits for graphs with strong mixing properties

Let G be a simple connected graph all of whose vertices have even degrees. An Eulerian circuit in G is a closed walk (see, for example, [2]) which uses every edge of G exactly once. Two Eulerian circuits are called equivalent if one is a cyclic permutation of the other. It is clear that the size of such an equivalence class equals the number of edges of graph G. Let EC(G) denote the number of e...

متن کامل

Packing odd T-joins with at most two terminals

Take a graph G, an edge subset Σ ⊆ E(G), and a set of terminals T ⊆ V (G) where |T | is even. The triple (G,Σ, T ) is called a signed graft. A T -join is odd if it contains an odd number of edges from Σ. Let ν be the maximum number of edge-disjoint odd T -joins. A signature is a set of the form Σ4δ(U) where U ⊆ V (G) and |U ∩ T | is even. Let τ be the minimum cardinality a T -cut or a signature...

متن کامل

Packing Odd Circuits

We determine the structure of a class of graphs that do not contain the complete graph on five vertices as a “signed minor.” The result says that each graph in this class can be decomposed into elementary building blocks in which maximum packings by odd circuits can be found by flow or matching techniques. This allows us to actually find a largest collection of pairwise edge disjoint odd circui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2002