Reliable and inexpensive colorimetric method for determining protein-bound tryptophan in maize kernels.

نویسندگان

  • Eric Nurit
  • Axel Tiessen
  • Kevin V Pixley
  • Natalia Palacios-Rojas
چکیده

Biofortification programs in maize have led to the development of quality protein maize (QPM) with increased contents of the essential amino acids lysine and tryptophan, and increased nutritional value for protein deficient populations where maize is a staple food. Because multiple genetic systems control and modify the protein quality of QPM, tryptophan or lysine monitoring is required to maximize genetic gain in breeding programs. The objective of this work was to develop an accurate, reliable, and inexpensive method for tryptophan analysis in whole-grain maize flour to support QPM research efforts around the world. Tryptophan reacts with glyoxylic acid in the presence of sulfuric acid and ferric chloride, producing a colored compound that absorbs at 560 nm. A series of experiments varying the reagent concentrations, hydrolysis time, and length of the colorimetric reaction resulted in an optimized protocol which uses 0.1 M glyoxylic acid in 7 N sulfuric acid and 1.8 mM ferric chloride, and 30 min reaction time. This method produced stable and reproducible results for tryptophan concentration in whole-grain maize flour and was validated by comparison with data obtained using an acetic acid-based colorimetric procedure (r(2) = 0.80) and high pressure liquid chromatography (HPLC) (r(2) = 0.71). We describe adaptations that permit high throughput application of this tryptophan analysis method using a microplate platform.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of field conditions, low nitrogen and drought on genetic parameters of protein and tryptophan concentrations in grain of quality protein maize

Quality Protein Maize (QPM) has about twice the amount of lysine and tryptophan of normal maize and hence represents an important tool of correcting its deficiency in protein quality. However, the effects of low nitrogen and drought on genetic parameters such as gene action and combining abilities of protein quantity and quality of QPM are not known. To study how these genetic parameters are af...

متن کامل

Genetic of resistance to ear rot causal agent (Fusarium moniliforme) in quality protein maize (QPM) using line×tester analysis

Breeding for QPM ear rot resistant cultivars could offer a reliable environmental and economic control of mycotoxins especially for the resource-poor communities that require inexpensive protein diets. This research aims at evaluating a testcross of QPM inbreds with ear rot resistant cultivars to develop resistant topcrosses with high grain protein quality and yield. Seven QPM inbreds (lines) a...

متن کامل

Seed-Specific Expression of a Lysine-Rich Protein Gene, GhLRP, from Cotton Significantly Increases the Lysine Content in Maize Seeds

Maize seed storage proteins are a major source of human and livestock consumption. However, these proteins have poor nutritional value, because they are deficient in lysine and tryptophan. Much research has been done to elevate the lysine content by reducing zein content or regulating the activities of key enzymes in lysine metabolism. Using the naturally lysine-rich protein genes, sb401 and SB...

متن کامل

Marker-assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-7

Improvement of quality protein maize (QPM) along with high content of lysine and tryptophan had foremost importance in maize breeding program. The efficient and easiest way of developing QPM hybrids was by backcross breeding in marker aided selection. Hence, the present investigation aimed at conversion of elite maize inbred line BML-7 into QPM line. CML-186 was identified to be a donor variety...

متن کامل

The Nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid.

We isolated two nitrilase genes, ZmNIT1 and ZmNIT2, from maize (Zea mays) that share 75% sequence identity on the amino acid level. Despite the relatively high homology to Arabidopsis NIT4, ZmNIT2 shows no activity toward beta-cyano-alanine, the substrate of Arabidopsis NIT4, but instead hydrolyzes indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). ZmNIT2 converts IAN to IAA at least se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of agricultural and food chemistry

دوره 57 16  شماره 

صفحات  -

تاریخ انتشار 2009