Sampling theorems in function spaces for frames associated with linear canonical transform

نویسندگان

  • Jun Shi
  • Xiaoping Liu
  • Qinyu Zhang
  • Naitong Zhang
چکیده

The linear canonical transform (LCT) has proven to be a powerful tool in optics and signal processing. Most existing sampling theories of this transform were derived from the LCT band-limited signal viewpoint. However, in the real world, many analog signals encountered in practical engineering applications are non-bandlimited. The purpose of this paper is to derive sampling theorems of the LCT in function spaces for frames without bandlimiting constraints. We extend the notion of shift-invariant spaces to the LCT domain and then derive a sampling theorem of the LCT for regular sampling in function spaces with frames. Further, the theorem is modified to the shift sampling in function spaces by using the Zak transform. Sampling and reconstructing signals associated with the LCT are also discussed in the case of Riesz bases. Moreover, some examples and applications of the derived theory are presented. The validity of the theoretical derivations is demonstrated via simulations. & 2013 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

Sampling Rate Conversion in the Discrete Linear Canonical Transform Domain

Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...

متن کامل

Paley-Wiener Theorems and Uncertainty Principles for the Windowed Linear Canonical Transform

In a recent paper the authors have introduced the windowed linear canonical transform and shown its good properties together with some applications such as Poisson summation formulas, sampling interpolation and series expansion. In this paper we prove the Paley-Wiener theorems and the uncertainty principles for the (inverse) windowed linear canonical transform. They are new in literature and ha...

متن کامل

Sampling Theorems of Band-limited Signals in the Linear Canonical Transform Domain

The linear canonical transform(LCT) has become a very active area in signal processing community in recent years, with many applications in optics, radar system analysis, filter design, phase retrieval, pattern recognition, etc. Many well-known transforms such as the Fourier transform,the fractional Fourier transform,and the Fresnel transform can be seen as special cases of the linear canonical...

متن کامل

Sampling Theorems for Fractional Laplace Transform of Functions of Compact Support

Linear canonical transform is an integral transform with four parameters and has been proved to be powerful tool for optics, radar system analysis, filter design etc. Fractional Fourier transform and Fresnel transform can be seen as a special case of linear canonical transform with real parameters. Further generalization of linear canonical transform with complex parameters is also developed an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2014