Ca+2/Calmodulin-Dependent Protein Kinase Mediates Glucose Toxicity-Induced Cardiomyocyte Contractile Dysfunction
نویسندگان
چکیده
(1) Hyperglycemia leads to cytotoxicity in the heart. Although several theories are postulated for glucose toxicity-induced cardiomyocyte dysfunction, the precise mechanism still remains unclear. (2) This study was designed to evaluate the impact of elevated extracellular Ca(2+) on glucose toxicity-induced cardiac contractile and intracellular Ca(2+) anomalies as well as the mechanism(s) involved with a focus on Ca(2+)/calmodulin (CaM)-dependent kinase. Isolated adult rat cardiomyocytes were maintained in normal (NG, 5.5 mM) or high glucose (HG, 25.5 mM) media for 6-12 hours. Contractile indices were measured including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), and time-to-90% relengthening (TR(90)). (3) Cardiomyocytes maintained with HG displayed abnormal mechanical function including reduced PS, ±dL/dt, and prolonged TPS, TR(90) and intracellular Ca(2+) clearance. Expression of intracellular Ca(2+) regulatory proteins including SERCA2a, phospholamban and Na(+)-Ca(2+) exchanger were unaffected whereas SERCA activity was inhibited by HG. Interestingly, the HG-induced mechanical anomalies were abolished by elevated extracellular Ca(2+) (from 1.0 to 2.7 mM). Interestingly, the high extracellular Ca(2+)-induced beneficial effect against HG was abolished by the CaM kinase inhibitor KN93. (4) These data suggest that elevated extracellular Ca(2+) protects against glucose toxicity-induced cardiomyocyte contractile defects through a mechanism associated with CaM kinase.
منابع مشابه
Oxidative activation of Ca /calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis
Roe ND, Ren J. Oxidative activation of Ca /calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol 304: H828–H839, 2013. First published January 11, 2013; doi:10.1152/ajpheart.00752.2012.—Endoplasmic reticulum (ER) stress elicits oxidative stress and intracellular Ca derangement via activation of Ca /calmodulin-dependent prote...
متن کاملCalcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure.
BACKGROUND Congestive heart failure (CHF) is a common cause of atrial fibrillation. Focal sources of unknown mechanism have been described in CHF-related atrial fibrillation. The authors hypothesized that abnormal calcium (Ca(2+)) handling contributes to the CHF-related atrial arrhythmogenic substrate. METHODS AND RESULTS CHF was induced in dogs by ventricular tachypacing (240 bpm x2 weeks). ...
متن کاملType III Transforming Growth Factor-β Receptor Drives Cardiac Hypertrophy Through β-Arrestin2-Dependent Activation of Calmodulin-Dependent Protein Kinase II.
The role of type III transforming growth factor-β receptor (TβRIII) in the pathogenesis of heart diseases remains largely unclear. Here, we investigated the functional role and molecular mechanisms of TβRIII in the development of myocardial hypertrophy. Western blot and quantitative real time-polymerase chain reaction analyses revealed that the expression of TβRIII was significantly elevated in...
متن کاملOxidative activation of Ca(2+)/calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis.
Endoplasmic reticulum (ER) stress elicits oxidative stress and intracellular Ca(2+) derangement via activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). This study was designed to examine the role of CaMKII in ER stress-induced cardiac dysfunction and apoptosis as well as the effect of antioxidant catalase. Wild-type FVB and transgenic mice with cardiac-specific overexpression ...
متن کاملInterval Training Normalizes Cardiomyocyte Function, Diastolic Ca Control, and SR Ca Release Synchronicity in a Mouse Model of Diabetic Cardiomyopathy
Rationale: In the present study we explored the mechanisms behind excitation–contraction (EC) coupling defects in cardiomyocytes from mice with type-2 diabetes (db/db). Objective: We determined whether 13 weeks of aerobic interval training could restore cardiomyocyte Ca cycling and EC coupling. Methods and Results: Reduced contractility in cardiomyocytes isolated from sedentary db/db was associ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012