Retinal progenitor cells can produce restricted subsets of horizontal cells.

نویسندگان

  • S B Rompani
  • C L Cepko
چکیده

Retinal progenitor cells have been shown to be multipotent throughout development. Similarly, many other structures of the developing central nervous system have been found to contain multipotent progenitor cells. Previous lineage studies did not address whether these multipotent progenitor cells were biased in their production of neuronal subtypes. This question is of interest because subtypes are the basis of distinct types of circuits. Here, lentivirus-mediated gene transfer was used to mark single retinal progenitor cells in vivo, and the different subtypes of horizontal cells (HCs) in each clone were quantified. Clones with two HCs consistently contained a single HC subtype, a pair of either H1 or H3 cells. This suggests that a multipotent progenitor cell produces a mitotic cell fated to make a terminal division that produces two HCs of only one subtype. This bias in production of one HC subtype suggests a previously undescribed mechanism of cell fate determination in at least a subset of retinal cells that involves decisions made by mitotic cells that are inherited in a symmetric manner by both neuronal daughter cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells

Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...

متن کامل

Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space

Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...

متن کامل

Cell based therapies in retinal diseases

Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...

متن کامل

P129: Use of Stem Cells to Regenerate Degenerative Optic Nerve

Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...

متن کامل

Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny.

Cell fate determination in the developing vertebrate retina is characterized by the sequential generation of seven classes of cells by multipotent progenitor cells. Despite this order of genesis, more than one cell type is generated at any time; for example, in the rat, several cell types are born during the prenatal period, while others are born postnatally. In order to examine whether there a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 1  شماره 

صفحات  -

تاریخ انتشار 2008