Stretching of the Back Improves Gait, Mechanical Sensitivity and Connective Tissue Inflammation in a Rodent Model
نویسندگان
چکیده
The role played by nonspecialized connective tissues in chronic non-specific low back pain is not well understood. In a recent ultrasound study, human subjects with chronic low back pain had altered connective tissue structure compared to human subjects without low back pain, suggesting the presence of inflammation and/or fibrosis in the low back pain subjects. Mechanical input in the form of static tissue stretch has been shown in vitro and in vivo to have anti-inflammatory and anti-fibrotic effects. To better understand the pathophysiology of lumbar nonspecialized connective tissue as well as potential mechanisms underlying therapeutic effects of tissue stretch, we developed a carrageenan-induced inflammation model in the low back of a rodent. Induction of inflammation in the lumbar connective tissues resulted in altered gait, increased mechanical sensitivity of the tissues of the low back, and local macrophage infiltration. Mechanical input was then applied to this model as in vivo tissue stretch for 10 minutes twice a day for 12 days. In vivo tissue stretch mitigated the inflammation-induced changes leading to restored stride length and intrastep distance, decreased mechanical sensitivity of the back and reduced macrophage expression in the nonspecialized connective tissues of the low back. This study highlights the need for further investigation into the contribution of connective tissue to low back pain and the need for a better understanding of how interventions involving mechanical stretch could provide maximal therapeutic benefit. This tissue stretch research is relevant to body-based treatments such as yoga or massage, and to some stretch techniques used with physical therapy.
منابع مشابه
Stretching Reduces Skin Thickness and Improves Subcutaneous Tissue Mobility in a Murine Model of Systemic Sclerosis
OBJECTIVE Although physical therapy can help preserve mobility in patients with systemic sclerosis (SSc), stretching has not been used systematically as a treatment to prevent or reverse the disease process. We previously showed in rodent models that stretching promotes the resolution of connective tissue inflammation and reduces new collagen formation after injury. Here, we tested the hypothes...
متن کاملA Case and Literature Review of Normal Pressure Hydrocephalus in Mixed Connective Tissue Disease
Normal Pressure hydrocephalus (NPH) is characterized by gait apraxia, urinary incontinence, and dementia. Mixed connective tissue disease (MCTD) is an autoimmune connective tissue disease that has never been reported to cause NPH. Our patient was a 67-year man with a one-year history of gradual worsening gait and balance, urinary urgency with urge incontinence and decreased short-term memory. P...
متن کاملEvaluation of knee joint Proprioception Changes in military forces following a period of a static and dynamic stretching of hamstrings, quadriceps and Gastrocnemius muscles
Background: One of the most important factors in the proper functioning of the military is the accurate assessment of feedback. Among these, the proper knee joint Proprioception is one of the most important factors in this regard. This study was performed to Evaluation of knee joint Proprioception Changes in military forces following a period of a static and dynamic stretching of hamstrings, qu...
متن کاملInvestigating the CTGF mRNA Expression Level in Patients with Colorectal Cancer
Background: The Connective Tissue Growth Factor (CTGF) gene encoding an extracellular matrix (ECM)-associated protein and as a member of the CCN family of proteins plays a major role in fibrosis, inflammation and connective tissue remodeling in a variety of diseases including cancer. The CCN proteins are multifunctional and are involved in cell proliferation, adhesion and cell development durin...
متن کاملPathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms.
Although chronic low back pain (cLBP) is increasingly recognized as a complex syndrome with multifactorial etiology, the pathogenic mechanisms leading to the development of chronic pain in this condition remain poorly understood. This article presents a new, testable pathophysiological model integrating connective tissue plasticity mechanisms with several well-developed areas of research on cLB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012