Classificationandevaluation the Privacy Preserving Distributed Data Miningtechniques
نویسندگان
چکیده
In recent years, the data mining techniques invarious areas have met serious challenges increasingconcernsaboutprivacy. Different techniques and algorithms have been already presented for Privacy preserving data mining (PPDM), which could be classified in two scenarios: centralized data scenario and distributed data scenario. This paper presents a Framework for classification and evaluation of the privacy preserving data mining techniques for distributed data scenario. Based on our framework the techniques are divided intothree major groups, namely Secure Multiparty Computation based techniques, Secret Sharing based techniques and Perturbation based techniques.Also in proposed framework, seven functional criteria will be used to analyze and analogically evaluation of the techniques in these three major groups. The proposed framework provides a good basis for more accuratecomparison of the given techniques to privacy preserving distributed data mining. In addition, this framework allows recognizing the overlapping amount for different approaches and identifying modern approaches in this field.
منابع مشابه
A centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملPrivacy Preserving Frequency Mining in 2-Part Fully Distributed Setting
Recently, privacy preservation has become one of the key issues in data mining. In many data mining applications, computing frequencies of values or tuples of values in a data set is a fundamental operation repeatedly used. Within the context of privacy preserving data mining, several privacy preserving frequency mining solutions have been proposed. These solutions are crucial steps in many pri...
متن کاملTools for Privacy Preserving Distributed Data Mining
Privacy preserving mining of distributed data has numerous applications. Each application poses different constraints: What is meant by privacy, what are the desired results, how is the data distributed, what are the constraints on collaboration and cooperative computing, etc. We suggest that the solution to this is a toolkit of components that can be combined for specific privacy-preserving da...
متن کاملPrivacy-Preserving Distributed Data Mining Techniques: A Survey
In various distributed data mining settings, leakage of the real data is not adequate because of privacy issues. To overcome this problem, numerous privacy-preserving distributed data mining practices have been suggested such as protect privacy of their data by perturbing it with a randomization algorithm and using cryptographic techniques. In this paper, we review and provide extensive survey ...
متن کاملA High Performance Privacy Preserving Clustering Approach in Distributed Networks
Privacy preserving over data mining in distributed networks is still an important research issue in the field of Knowledge and data engineering or community based clustering approaches, privacy is an important factor while datasets or data integrates from different data holders or players for mining. Secure mining of data is required in open network. In this paper we are proposing an efficient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012