Classificationandevaluation the Privacy Preserving Distributed Data Miningtechniques

نویسندگان

  • SOMAYYEH SEIFI MORADI
  • MOHAMMAD REZA KEYVANPOUR
چکیده

In recent years, the data mining techniques invarious areas have met serious challenges increasingconcernsaboutprivacy. Different techniques and algorithms have been already presented for Privacy preserving data mining (PPDM), which could be classified in two scenarios: centralized data scenario and distributed data scenario. This paper presents a Framework for classification and evaluation of the privacy preserving data mining techniques for distributed data scenario. Based on our framework the techniques are divided intothree major groups, namely Secure Multiparty Computation based techniques, Secret Sharing based techniques and Perturbation based techniques.Also in proposed framework, seven functional criteria will be used to analyze and analogically evaluation of the techniques in these three major groups. The proposed framework provides a good basis for more accuratecomparison of the given techniques to privacy preserving distributed data mining. In addition, this framework allows recognizing the overlapping amount for different approaches and identifying modern approaches in this field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A centralized privacy-preserving framework for online social networks

There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...

متن کامل

Privacy Preserving Frequency Mining in 2-Part Fully Distributed Setting

Recently, privacy preservation has become one of the key issues in data mining. In many data mining applications, computing frequencies of values or tuples of values in a data set is a fundamental operation repeatedly used. Within the context of privacy preserving data mining, several privacy preserving frequency mining solutions have been proposed. These solutions are crucial steps in many pri...

متن کامل

Tools for Privacy Preserving Distributed Data Mining

Privacy preserving mining of distributed data has numerous applications. Each application poses different constraints: What is meant by privacy, what are the desired results, how is the data distributed, what are the constraints on collaboration and cooperative computing, etc. We suggest that the solution to this is a toolkit of components that can be combined for specific privacy-preserving da...

متن کامل

Privacy-Preserving Distributed Data Mining Techniques: A Survey

In various distributed data mining settings, leakage of the real data is not adequate because of privacy issues. To overcome this problem, numerous privacy-preserving distributed data mining practices have been suggested such as protect privacy of their data by perturbing it with a randomization algorithm and using cryptographic techniques. In this paper, we review and provide extensive survey ...

متن کامل

A High Performance Privacy Preserving Clustering Approach in Distributed Networks

Privacy preserving over data mining in distributed networks is still an important research issue in the field of Knowledge and data engineering or community based clustering approaches, privacy is an important factor while datasets or data integrates from different data holders or players for mining. Secure mining of data is required in open network. In this paper we are proposing an efficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012